




v,v-s-->/^.:^f'->^gi

%;v:

m<^^--:
i\.. !r"^V>



Digitized by the Internet Archive

in 2007 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/elementarytreatiOOroutuoft











m ELEMENTARY TREATISE

ON THE

DYNiMICS OF A SYSTEM OF

RIGID BODIES.



Cambrtos^:

PRINTED BY C. J. CLAY, M.A.

AX THE UNIVERSITY PRESS.



AN ELEMENTARY TREATISE

ON THE

DYNAMICS OF A SYSTEM OF

RIGID BODIES.

xi^ xmmxam €/ampfes».:

EDWARD JOHN ROUTiff, M.A.
FELLOW AND ASSISTANT TUTOR OP ST PETEE'S COLLEGE, CAMBEIDOE;

EXAMINER IN THE UNIVERSITY OF LONDON.

MACMILLAN AND CO.

AND 23, HENEIETTA STREET, COVENT GARDEN,

Honlion.

1860.





PREFACE.
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alone.

The numerous Examples, which will be found at

the end of each chapter, have been chiefly selected

from the Examination Papers set in the University

and in the Colleges during the last few years.

I have also to express my acknowledgments to

Mr McDowell of Pembroke College, for his assist-

ance in correcting the proof sheets, and I beheve

that there are few errors which have escaped de-

tection.

EDWAED J. ROUTE.
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DYNAMICS OF A RIGID BODY.

CHAPTER I.

ON MOMENTS OF INERTIA.

Sect. I. Elementary Properties.

1. Def. 1. If the mass of every particle of a material

system be multiplied by the square of its distance from a

straight line, the sum of the products so formed is called the

moment of inertia of the system about that line.

Def. 2. If M be the mass of a system, and k be such a

quantity that Mk^ is its moment of inertia about a given

straight line, then k is called the radius of gyration of the

system about that line.

Def. 3. If two straight lines Ox^ Oy be taken as axes,

and if the mass of every particle of the system be multiplied

by its two co-ordinates ic, y, the sum of the products is called

the product of inertia of the system about those two axes.

Let a body be referred to any rectangular axes Ox^ Oy^

Ozy meeting in a point 0, and let x, y, z be the co-ordinates of

any particle w, then, according to these definitions, the

moments of inertia about the axes of a;, y, z respectively will be

. B=tm{f^xy.,
C=^^m{x^-^y')\

R. D. 1
/



2 ON MOMENTS OF INERTIA.

and the products of inertia about the axes of yz^ zXj xy^

D=^Xm{yz),

E=Xm{zx)j

F=^Xm{xy).

2. In the particular case of the body being a lamina,

taking the axis of z normal to the lamina, we have z = 0,

and therefore

A = Sm?/'^, B= Xmx^,

C==tm{x' + y').

Hence C=A-\-B, or the moment of inertia of a lamina

about an axis perpendicular to its plane is equal to the sum
of the moments of inertia about any two perpendicular axes

in its plane drawn from the point where the former axis meets

the plane.

3. PnOP. I. Given the moments and products of inertia

about all axes through the centre of gravity of a body, to

deduce the moments and products about all other parallel axes.

" The moment of inertia of a body or system of bodies

about any axis is equal to the moment of inertia about a
parallel axis through the centre of gravity plus the moment
of inertia of the whole mass collected at the centre of

gravity about the original axis."

" The product of inertia about any two axes is equal to

the product of inertia about two parallel axes through the
centre of gravity plus the product of inertia of the whole
mass collected at the centre oi gravity about the original axis.'*

First, take the axis about which the moment of inertia is

required as the axis of z. Let m be the mass of any particle

of the body, which generally will be any small element.

Let X, y, z be the co-ordinates of m,

X, y, z those of the centre of gravity G of the whole
system of bodies,

X, y, z those of m referred to a system of parallel

axes through the centre of gTavity.



ELEMENTARY PKOPERTIES. 3

Then since

^mx ^my ^mz
Xm ' Xm ' Xon

are the co-ordinates of the centre of gravity of the system

referred to the centre of gravity as the origin, it follows that

Xmx' — 0, Xmy' — 0, Xmz' = 0.

The moment of inertia of the system about the axis of z is

^Xm{{x + xy+{y+yn
= Xm{x' + f)+tm{x" + y"),

+ 2x . Xmx + 2y . Xmy,

Now Xm (s? + y^) is the moment of inertia of a mass Xm
collected at the centre of gravity, and 2m {x^ + y'^) is the

moment of inertia of the system about an axis through G,
also Xmx = 0, Xiny' — ; whence the proposition is proved.

Secondly^ take the axes of a?, y as the axes about which
the product of inertia is required.

The product required is

= Xm xy,

= Xm{x-hx)(y-]-y'),

= xy . 2m + 2m {xy')

+ "xlmy + y%inx'

= xyXm + %mxy ,

Now xy . 2m is the product of inertia of a mass 2m col-

lected at G and Xmxy is the product of the whole system
about axes through G ; whence the proposition is proved.

4. Let there be two parallel axes A and B at distances

a and h from the centre of gravity of the body. Then, if M
be the mass of the material system,

moment of inertia") ^ ^ _ ("moment of inertia ^,3

about A )
~

\ about B
1—2
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Hence when the moment of inertia of a body about one

axis is known, that about any other parallel axis may be

found. It is obvious that a similar proposition holds with

regard to the products of inertia.

5. The preceding proposition may be generalised as

follows. Let any system be in motion, and let ar, ?y, z

be the co-ordinates at time t of any particle of mass m^ then

dx dy dz . , .^, , d^x d'^y d^z .

jt' i' di^'^
^^^ ^"^°"'*'"'' *"^ ^

'
^

' rff
^^^ ^-

celerations of the particle resolved parallel to the axes.

Suppose

V m<p \x,
^^ , ^^, , y, ^^, ^., ^ ^^

dt' df)

to be a given function depending on the structure and motion

of the system, the summation extending throughout the sys-

tem. Also let
<i>

be an algebraic function of the first or

second order. Thus <^ may consist of such terms as

at at
+ Eyz + Fx +

where A, B, (7, &c. are some constants. Then the following

general principle Avill hold.

"The value of Ffor any system of co-ordinates is equal to

the value of V obtained for a parallel system of co-ordinates

with the centre of gravity for origin plus the value of V for

the whole mass collected at the centre of gravity with refer-

ence to the first system of co-ordinates."

For let X, y, z be the co-ordinates of the centre of gravity,

and let'

x = x + x, &c. &c.;

dx dx dx p p

NoT^ since (p is an algebraic function of tlie second order of
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a*, -y- , -j^ 'i y, &c. it is evident that on making the above sub-
at OAT

stitution and expanding, the process of squaring &c. wOl lead

to three sets of terms, those containing only x, -j , -,^ , &c.,

those containing the products of a?, ic', &c., and lastly those con-
dx

taining only a;', -7- , &c. The first of these will on the whole

make up cj) Ix, -j- , &c.
j

, and the last <j> lx\ -3-
, &c. )

.

Hence we have

where A^ B, C, &c. are some constants.

/ (JX \ fil'

Now the term Sm (^-7-) is the same as acSw -y- , and

this vanishes. For since Xmx = 0, it follows that

^ dx -

Similarly all the other terms in the second line vanish.

Hence the value of V is reduced to two terms. But the

first of these is the value of V at the origin for the whole mass
collected at the centre of gravity, and the second of these the

value of V for the whole system referred to the centre of

gravity as origin. Hence the proposition is proved.

The proposition would obviously be true if

d^x d^^y d^zW W ~de'

or any higher differential coefficients were also present in th©

function F.
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6. Prop. II. Given the moments andproducts of inertia

about three straight lines at right angles meeting in a point, to

deduce the moments and products of inertia about all other axes

meeting in that point,

'•Take these three straight lines as the axes of co-ordinates.

Let A, B, C be the moments of inertia about the axes of

X, y, z; Z), ^, F the products of inertia about the axes of

yz, zix, xy. Let a, 0, 7 be the direction cosines of any straight

line through the origin, then the moment of inertia Q of the

body about that line will be given by the equation

Q = A(i^ + B^-\-Crf- 2D^r^ - 2EyoL - 2Fal3r

Let P be any point of the body at which a mass m is

situated, and let x, y, z be the co-ordinates of P. Let ON be

the line whose direction cosines are a, /S, 7, draw PN perpen-

dicular to ON,

Since ON is the projection of OP, it is clearly

= XOL + 7/l3+ 27,

also OP'^x' + y' + z^

and l = a'' + yS'4-7^

The moment of inertia Q about ON
= :SmPiY2

^tm{x^ + y^ + z^-{ax+fy + yzy}
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= tm [{x' +f + z') {a' + ff' + y') - {ax + fy+ yz)']

= Xm (/ + z')a'-\-tm {z'' + x') ^ + tm [x^+ f) ^
— 'i^myz

.Py — 2^mzx .y a— 2Xmxy . ay8

= Aa^ + B^+ Cy" - W^y - 2Eyfx - 2Fa^.

7. This result may be exhibited geometrically ; for con-

struct the ellipsoid whose equation is

AX'+BY'+ CZ'' - 2D YZ- 2EZX-2FXY= e\

Then if R represent the length of any radius vector from the

centre whose direction cosines are a, $, y,

X= Roi, Y=RI3, Z=By;

substituting, we have Q =^ . Whence the moment of in-

ertia about any radius vector from the centre varies inversely

as the square of that radius vector.

If this ellipsoid be referred to any other set of axes through

its centre, the coefficients will be the moments and twice the

products of inertia about the new axes. For take the Polar

Equation

-4 = Aar + B/S' + Cy"" - 2Dfiy - 2Eya - 2Fa^,

and compare it with the general expression for the moment
of inertia about the line whose direction cosines are a, /3, y.

Then, since the two results must be the same for all values of

a, y3, 7, the geometrical meaning of ^, B^ C, &c. is evident.

Also, if the surface be referred to its principal diameters

as axes, its equation will be of the form

AX' + BY'-{-CZ' = €\

and A, B, C being moments of inertia are essentially positive.

Hence the surface is an ellipsoid.

Every point of a material system has therefore its cor-

responding ellipsoid whose centre is situated at that point.
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This is called the Moniental Ellipsoid at that point. It is

also sometimes called Poinsot's Ellipsoid. When the mo-
mental ellipsoid at any point is determined, the moment of

inertia about any radius vector from the centre is proportional

to the inverse square of that radius vector, and the relations

of these several moments of inertia to each other may be de-

duced from the corresponding relations of the radii vectores of

an ellipsoid.

8. The properties of the products of inertia of a body
about different sets of axes are not so useful as to require a

complete discussion. The reader will have no difficulty in

deducing the following results from the properties of an
ellipsoid.

(1) If any point be given and any plane drawn
through it, then two straight lines at right angles Ox^ Oy^
can always be found such that the product of inertia about
these lines is zero.

These are the axes of the section of the momental ellipsoid

at the point formed by the given plane.

(2) If two other straight lines at right angles Ox, Oy be
taken in the same ])lane, making an angle Q measured in the

positive direction with Ox^ Oy respectively, then the product

of inertia F' about Ox , Oy is given by the equation

F'=isin2^(^-^),

where A and B are the moments of inertia about Ox^ Oy,

(3) If A ^ B be the moments of inertia about Ox , Oy\
then the expression AB — F''^ is constant for all positions of

Ox, Oy in the same plane, and is therefore equal to AB,

(4) The value of A'B — F'^ is the same for all planes

through such that the areas of the sections formed by them
with the momental ellipsoid at is constant.

(5) For any plane whose equation is

lx-{-7ny-{- nz = 0,

I
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the value of the product of inertia is given by the equation

where A^, B^, C^ are the moments of inertia about the prin-

cipal diameters of the ellipsoid whose centre is at 0, and I, m^ n
the direction cosines of the plane referred to these diameters

as axes.

(6) If / be the moment of inertia about any line in this

plane making an angle 6 with Ox, then

J=^cos'^^ + i?sin'^(9.

For the section of the momental ellipsoid by the plane is the

ellipse whose equation, referred to its principal diameters as

axes, is

Ax'-\-Btf = e\

whence the property follows at once.

9. Def. When three straight lines at right angles and
meeting in a given point are such that if they be taken as

axes of co-ordinates the products

all vanish, these are said to be Principal Axes.

Principal axes can only be defined as a system, and not

separately.

The moments of inertia about the principal axes at any
point are sometimes called the Principal Moments of Inertia

at that point.

10. Prop. III. At every point of a material system there

are always three princijpal a^es at right angles to each other.

The products of inertia about the axes are half the co-

efficients of XF, YZ, ZX in the equation to the momental
ellipsoid referred to these straight lines as axes of co-ordinates.

Now if an ellipsoid be referred to its principal diameters as

axes, these coefficients vanish. Hence the principal diameters

of the ellipsoid are the principal axes of the system. But
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every ellipsoid has at least three principal diameters, hence

everj material system has at least three principal axes.

li A, B, (7 be the three principal moments of inertia at

any point, the expression given in Prop. ii. for the moment
of inertia about any other line becomes

11. The positions of the principal axes at many points

in a body may also be found by inspection.

Thus the principal axes of an ellipsoid at the centre of

gravity are its principal diameters. Let these be taken as

axes, then the sum ^mx7/ = 0. For if any element m be
taken two of whose co-ordinates are x, t/, another element m,
of equal mass, can be found whose corresponding co-ordi-

nates are — x, y. Hence the above sum for the whole body
is zero. Similarly 'linyz=0^ %mzx= 0, and these, by Art. 9,

are the conditions that the diameters are the principal axes at

the centre.

So also the principal axes at the centre of an ellipse are

the two principal diameters and a normal to the plane of the

ellipse.

By a consideration of some simple properties of ellipsoids,

the following propositions are evident

:

Of the moments of inertia of a body about axes meeting
at a given point, the moment of inertia about one of the

principal axes is greatest and about another the least.

For, in the momental ellipsoid, the moment of inertia

about any radius vector from the centre is least when that

radius vector is greatest and vice versa. And it is evident

that the greatest and least radii vectores are two of the

principal diameters.

If the three principal moments at any point be equal

to each other, the ellipsoid becomes a sphere. Every dia-

meter is then a principal diameter, and the radii vectores are

all equal. Hence every straight line through Is a principal

axis at 0, and the moments of inertia about them are all

equal.
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For example, the perpendiculars from the centre of gravity

of a cube on the three faces are principal axes ; for, the body
being refeiTed to them as axes, we clearly have Xon xy = 0,

Xmyz = Oj ^mzx = 0. Also the three moments of inertia

about them are by symmetry equal. Hence every axis

through the centre of gravity of a cube is a principal axis,

and the moments of inertia about them are all equal.

12. The reciprocal surface of the momental ellipsoid is

another ellipsoid, which is called the Ellipsoid of Gyration.

This second surface has also been employed to represent,

geometrically, the position of the principal axes and the mo-
ment of inertia about any line.

" To show that the reciprocal surface of the ellipsoid

is the ellipsoid

Let ON be the perpendicular from the origin on the

tangent plane at any point F of the first ellipsoid, and let

ly rrij n be the direction cosines of ON, then

ON' = a'r + hV-\-c'n\

Produce ON to Q so that 0Q = ^^, then § is a point on

the reciprocal surface. Let 0Q = B;

-/x

Changing this to rectangular co-ordinates, we get

It follows, therefore, that the principal diameters of the

ellipsoid of gyration are the principal axes of the body, and
the moment of inertia about the perpendicular on any tangent-

plane is measured by the square of that perpendicular.
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13. In all the succeeding chapters the moments of inertia

of several bodies will be so frequently occurring that it will

be found advisable to commit to memory the following table

:

The moment of inertia of

(1) A straight line of length 23i,

about an axis through its centre) _ a*

perpendicular to it J 3
*

(2) A triangle

about an axis in its plane) 1 y^ —^
, 1 1 • r = mass - ^

,

through an angular point) 6 y — p

where y8, y arc the distances of the other two angular points

from the axis.

(3) A71 ellipse semi-axes a and b

about the major axis a = mass —

,

mmor axis = mass —
;

4

about an axis perpendicular to] a^ + h^

its plane through the centre;
"

4

This includes the case of a circle.

(4) An ellijpsoid semi-axes a, b, and c

about tne axis a = mass—-— .

o

This includes the case of a sphere.

(5) A cube whose side is a

about any axis through its] _ a*

centre of gravity J 6
'

All these moments of inertia, except that of the triangle, 1

are about principal axes at the centre of gravity. Then by
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Prop. II. we can determine the moment of inertia ahout any
other line through the centre of gravity, and by Prop. I. the

moment about any parallel line.

14. As the process for determining these moments of

inertia is very nearly the same for all these cases, it will be
sufficient to consider only two instances.

To determine the moment of inertia of an ellipse about
the minor axis.

Let the equation to the ellipse be

V = - Va" — ic^
^ a

Take any elementary area PQ parallel to tlie axis of 9/, then

clearly the moment of inertia is

4fjL I n^ydx = 4//, -
I

a?^ ^1 of' — x' dx,
Jo ^J

where fi is the mass of a unit of area.

To integrate this, put a? = a sin ^, then the integral

becomes

Q S
» . . T a a

.'. the moment of inertia= fiTrao — = mass—

.

To determine the moment of inertia of an ellipsoid about

a principal diameter.
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Let tlie equation to the ellipsoid be

or h c

Take any elementary area PNQ parallel to the plane of yz.

Its area is evidently irPN. QN. Now PN is the value of z

when y = 0, and QN the value of y when 2; = 0, as obtaine(

from the equation to the ellipsoid

;

/. PN= - ^a^ - x\ QN= - \fd' - x'

;

/. the area of the element = —^ (a^ — x^),
a ^

'

Let /x. be the mass of a unit of volume, then the whole
moment of inertia

4 . b' + c'
fi-irabc —-

—

o o

= mass
V'-^c'
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Sect. II. On tJie Positions of the Principal Axes of a System,

15. Prop. IV. A straight line being given, it is required

to find at what point in its length it is a principal axis of the

system, and if any such point exist to find the other two princi-

pal axes at that point.

Take the straight line as axis of z, and any point in it

as origin. Let C be the point at which it is a principal

axis, and let Cx'y Cy be the other two principal axes.

Let CO = A, ^= angle between Cx and Ox, Then'

X = X cos Q -\-y sin 6\

y = — £c sin ^ +y cos ^1 •

z =z — h ^

Hence

%mxz = cos 6Xm xz -\- sin 6 %myz
\

— h (cos 6 Xmx-\- sin 6 Xmy)} ^^

%myz = — sin ^ '%mxz + cos Xmyz]
— h{— sin 9 Xmx + cos 6 Xmy)\

~~
^ '

Xmx'y —^m {y^ — x^— h'tmxy cos 2d =0 (3)

The last equation shows that

tan 2^ = ^^

—

, , ^,, (4)
2,7n [X —y)

2F
" B--A'

according to the previous notation.

The equations (1) and (2) must be satisfied by the same
value of A. This gives as the condition that the axis of z is

a principal axis at some point in its length,

%mxz Xmy — ^myz %mx.
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Substituting in (1), we get

^^
^ tmijz ^ S

,(5)

The equation (5) expresses the condition that the axis of z

should be a principal axis at some point in its length ; and
the value of Ji gives the position of this point. The positions

of the other two principal axes may then be found by equa-

tion (4).

To determine the geometrical meaning of this condition,

take the plane of xz to pass through tlie centre of gravity of

the body. Then we have ^mi/= 0, and the equation becomes

'^mx Xviyz = 0.

One of these factors must be zero. In order that Ji may be

finite, we must have ^m^/z = 0. Construct the momenta!
ellipsoid at the centre of gravity. By Art. 7 its equation re-

ferred to axes of co-ordinates parallel to Cx, Ct/, Cz, is

AX'-hBY'+ CZ'-2EZX-2FXY=e*,

according to the previous notation. The coefficient D of YZ
is zero, because by Art. 3

Sm7/z = D + Sm .yz.

The equation to a section parallel to the plane yz is

BY'+ CZ' = €\

which is an ellipse referred to its principal diameters as axes.

Hence, in order that a straight line may be a principal axis at

some point not infinitely distant, it must be parallel to one of

the principal diameters of the section of the momental ellip-

soid at the centre of gravity, made by a plane perpendicular to

the plane containing the axis and the centre of gravity.

16. If ^mxz = and 'tmyz = 0, the equations (1) and (2)

are both satisfied by h = 0. These are therefore the sufficient

and necessary conditions that the axis of z should be a prin-

cipal axis at the origin.
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If the system "be a plane lamina and the axis of s be a

normal to the plane at any point, we have z = 0. Hence the

conditions ^mxz=0 and %myz = are satisfied. Therefore

one of the principal axes at any point of a lamina is a normal
to the plane at that point.

In the case of a sm-face of revolution bounded by planes

perpendicular to the axis, the axis is a principal axis at any
point of its length.

17. Again equation (4) enables us, when one principal

axis is given, to find the other two. If 6 = a be the first

IT
value of 6, all the others are included in 6 = a.-\-n—', hence

all these values give only the same axes over again.

18. Since (4) does not contain ^, it appears that if the

axis of 2 be a principal axis at more than one point, the

principal axes at those points are parallel. Again, in that

case (5) must be satisfied by more than one value of h. But
since Ji enters only in the first power, this cannot be unless

2wa; = 0, %7ny = 0y

%mxz = 0, '^myz = ;

so that the axis must pass through the centre of gravity and
be a principal axis at the origin, and therefore (since the

origin is arbitrary) a principal axis at every point in its

length.

If the principal axes at the centre of gravity be taken as

the axes of x, y, z, (1) and (2) are satisfied for all values of h.

Hence, if a straight line be a principal axis at the centre of

gravity, it is a principal axis at every point in its length.

In many Dynamical investigations it is necessary to

know the positions of the principal axes at any point of

a body, and for this purpose the following rules will be
useful.

R. D. 2



18 ON MOMENTS OF INERTIA.

19. Prop. Y. Given the positions of the 'principal axes

Ox, Oy, Oz at the centre of gravity O, and the moments of

inertia about them, to find the positions of the principal axes

at any point P in the plane of xy, and the moments of inertia

about those axes.

Let the mass of the body be taken as unity, and let A, B
be the moments of inertia about the axes Ox, Oy, of which

we shall suppose A the greater.

Take two points S and H in the axis of x on each side

of the origin so that

0S= OB^'^A-B.

Then because these points are in one of the principal axes at

the centre of gravity, the principal axes at 8 and H are

parallel to the axes of co-ordinates, and the moments of

inertia about those in the plane of xy are respectively A and

B-\-08^ = A, and these being equal, any straight line

through S and H in the plane of xy is a principal axis at

that point, and the moment of inertia about it is equal to A,

If P be any point in the plane of xy, then one of the prin-

cipal axes at P will be perpendicular to the plane xy. For
if p, q be the co-ordinates of P, the conditions that this line

is a principal axis are

2m {x—p) z = 0\

which are obviously satisfied because the centre of gi-avity is

the origin, and the principal axes the axes of co-ordinates.

The other two principal axes may be found thus. If two
straight lines meeting at a point P be such that the moments
of inertia about them are equal, then provided they are in a
principal plane the principal axes at P bisect the angles

between these two straight lines. For if with centre Pwej
describe the Momental Ellipse, then the axes of this ellipse

bisect the angles between any two equal radii vectores.

I
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Join SP and HP; the moments of inertia aLout SP, HP
are each equal to A. Hence, if PG and PT are the internal

and external bisectors of the angle SPH-, PG, PT are the

principal axes at P. If therefore with S and H as foci we
describe any ellipse or hyperbola, the tangent and normal at

any point are the principal axes at that point.

20. Take any straight line MN through the origin,

making an angle with the axis of x. Draw 8M, HN per-

pendiculars on MN. The moment of inertia about it is

= ^cos*^ + Psin''^

^A-SM\

Through P draw PT parallel to MN, and let SYsmd HZ
be the perpendiculars from 8 and H on it. The moment of

inertia about PT is then

= moment about MN \- MY*

^A + {MY-SM){MY+83r)

^A + SY.HZ,

In the same way it may be proved that the moment of

2—2
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inertia about a line PG passing between H and 8 is less

than A by the product of the perpendiculars from ^S' and H
on FG.

If therefore with S and H as foci we describe any ellipse

or hyperbola^ the moments of inertia about any tangent to either

of these curves is constant.

It follows from this that the moments of inertia about the

• • 1 .7, WD /SP±HP\''
prmcipal axes at jT are equal to ij +

2

For if a and b be the axes of the ellipse we have

a'-b'=^OS' = A-B,
and hence

fSP+H.A + SY.HZ=A + b' = B+a' =B+ ^V 2

and the hyperbola may be treated in a similar manner

21. Prop. VI. Given the positions of the principal axe

Ox, Oy, Oz at the centre of gravity O, and the moments
inertia A, B, C about them, to find the positions of the jprinci-

pal axes at any point.

Let the mass of the body be taken as unity, and let p, q, r

be the co-ordinates of P. About the point P describe the

Momental Ellipsoid. Its equation referred to axes through
P as origin parallel to Ox, Oy, Oz is known to be

A'X" +B'Y'+C'Z'-2 {tmy'z') YZ- 2 [tmz'x] ZX

-2{Xmx'y')XY=€' (1),

where x', y, z are the co-ordinates of the particle m referrec

to axes through P parallel to the axes of co-ordinates. Noi
by Prop. I.

'Zmyz=qr, ^mz'x' = rp, '%mxy =pq ] . .

A' = A-v^ + r\ B'^B^r^-\-p\ (7'= O+y + ^T"^
^'
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Hence the equation to the ellipsoid becomes *

A'X' + JB'Y^+ C'Z^ - 2qr YZ- 2rpZX
-2j?^Xr=€* (3).

Suppose that this ellipsoid when referred to its principal

axes is

I,X' + I^Y' + I,Z' = e\

Then /^ /g, I^ are the roots of the Discriminating Cubic

(/- A) (7- B) {I- C) - ^V^ (Z- A') - 7-y (/- B)

-fi {I- 0') + 2//7-^ = (4).

And if ?, 771, n be proportional to the direction-cosines of the

axis corresponding to any one of the values of /, their values

may be found from

A!l —pq.m — pr.n = I.l\

Bm— qpd — qr.n =I.m\ (5).

Cn — rp.l —rq.m—I.n]

Now the centre of gravity being the origin, consider the

ellipsoid whose equation is

and suppose the point p, ^, r to be situated on this ellipsoid,

hence

i44-^ («)•

The normal to this ellipsoid at the point p, q, r may
be made to coincide with one of the principal axes at that

point.

For the direction-cosines of the normal are respectively

proportional to

q
771 = A , n

a'' ¥' d

r
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Substituting these in equations (5), and remembering
equation (6) we get

Similarly I^ =B+f + q' + r'-h\

from the second and third. That these equations may coexist,

we must have

a'-A==h'-B = c'-C (7),

or the ellipsoid must be confocal with that whose equation is,

x^ y^ z"^ ^

Again, equation (4) will be satisfied by this value of /,

for it.may be deduced from (5) by elimination of I, m, n.

Similarly it may be shown that the other two principal

axes at P are normals to the other two confocal surfaces of

the second order*.

As we shall have to make frequent reference to these sur-

faces we shall call them the " subsidiary" surfaces of the

second order. Calling each of the quantities in (7) X, their

general equation will be

^'
,
y

,

^'
-1

A + X'^^T^'^ C+X '

and \ is the variable parameter that determines the particular

ellipsoid under consideration.

The ellipsoid that corresponds to X = is evidently the

ellipsoid of gyration.

22. We know that the lines of curvature on an ellipsoid

are the curves in which it is intersected by confocal surfaces

* This result was given by Prof. Thomson in the Cambridge and Dublin
Mathematical Journal, 1846.
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of tlie second order, and that the tangents to the lines of cur-

vature meeting in any point are parallel to the axes of the

diametral section made by a plane parallel to the tangent
plane at that point.

Hence if through any jpoint we describe the subsidiary

ellipsoid, the principal axes are the normal to the ellipsoid at

that point, and the tangents to the lines of curvature, or which
is the same thing, parallels to the axes of the section parallel

to the tangent plane,

23. Prop. YII. To find the moments of inertia about

the three principal axes meeting at a point whose co-ordi-

nates arep, q, r.

The values of / given by equations (5) are the squares of

the reciprocals of the axes of the momenta! ellipsoid at the point

P. Hence the values of/given by (5) are the required moments
of inertia. Let P be the length of the radius vector drawn
from the centre of the "subsidiary" ellipsoid to the point

[p, q, r). Let Q and R be the lengths of the axes of the dia-

metral plane of the radius vector P. The equation to this dia-

metral plane is

^2 -t- ^z *
^.
- ^,

and the direction-cosines of one of the axes of this section

are proportional to

p q ^

Q'-d" Q'-b" Q'-c'-

Hence substituting in (5)

i2
2 2 \
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Now the equatiou for finding the axes of the section is

2 2 2

multiply this equation by Q^, and subtract from it

and we get

+ |, + 3,
= l;

Hence I^= A-hp'' + q' + r'+ Q'-a'

Similarly I^ = F'+E'-\.

And the value of I^ , the moment of inertia about the normal,

has been already shown to be

We can deduce from these equations

7^ + 7^ + 73 = ^ + 5+ a+2P^

I. + I.-I.^A + B+G^-^X.

The last result is constant for all points on the subsidiary ellip-

soid.
'

24. Prop. YIII. To find the curves on the subsidiary

ellipsoid through a given point at which the principal moments

of inertia are equal to those at the given point.

First, all those points at which the principal moment
about the normal is constant, are found by making 7^ constant.

This gives P constant, and hence the required curve is the

intersection of a sphere with the ellipsoid. This curve is well

known to be the spherical ellipse.
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Secondly, those points at which the principal moment
about a tangent is constant are found by making I^ or I^

constant.

Let n be the length of the perpendicular from the origin

on the plane that contains the axes I^^ I^^ then

Q,B.U = ahc.

P'+Q' + B' = a' + h' + c\

^. = F'+Q' + E'-•\-B'

= a'+5'+c--X
a'bV

L.= a'-^b'+c'-X
a%'c'

and .3 „ ,„ _ .. ^,jj,.

If any line of curvature be taken on the ellipsoid the tan-

gents are all principal axes at the points of contact, and (as is

proved in all books on Solid Geometry) along that line

Q,U = constant.

Hence the Tnoments of inertia about the tangents to any line

of curvature are equal.

In tlie plane that contains the axes I^, I^, and through
their point of intersection draw any straight line making an
angle </> with the axis I^. Then the moment of inertia about

this line is

/= /g cos^<^ + /g sin^<^

^p^^X^Q^ cos'<^ + R^ sin'<^

where D is the radius vector, parallel to the axis 7, of the
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section of the ellipsoid made by a plane drawn through the

centre parallel to the tangent plane at the point P.

But if any geodesic line be drawn on an ellipsoid, and if

D be the semi-diameter of the surface parallel to any tangent
to the geodesic line, and n the perpendicular on the tangent-

plane to the ellipsoid at the point of contact of the tangent,

nZ> = constant.

Hence the moments of inertia about the tangents to any
gsodesic line on the ellipsoid are equal,

25. The locus of all those points at which one of the

principal moments of inertia of the body is constant is called

an equimomental surface.

To find the equation to such a surface we have only to

put Jj constant, this gives \ = F^ — I. Hence the equation to

the surface becomes

____^ f

x'+7/ + z'+C-I

26. Pkob. To find the locus of all those points in a hody

at which the product of the three principal moments is equal to

a given quantity.

Take the principal axes at the centre of gravity for axes of

co-ordinates, and let A,B, C, be the moments of inertia about

them. Let x, 3/, 2, be any point of the required locus. Then
if we construct the momental ellipsoid whose centre is at

[x, y, z), the product of its three axes is equal to a given

quantity. The equation to this ellipsoid is

A'X' + B'Y^+ C'Z' - 2yz YZ- 2zxZX- 2xyXY= €*,

where A = A -\- y"^ ^- z^, with similar expressions for B'

and C,
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The axes of this surface may be found from the Discrimi-
nating Cubic

(P-A') {P-B') {P- C) -!/£' {P-A') - z'af {P-B')

- xY {P- C) + ^x^z' = 0.

The term independent of P in this equation is equal to

the product of the three principal moments, and is therefore

to be made constant. Hence, the equation to the required

locus is

- A'Ba + fz'A' -f z'x^B + xYC + 2xYz' = Q,

where Q is the constant product of the three principal

moments.

EXAMPLES.

1. Find the moment of inertia of an arc of a circle whose
radius is a, and which subtends an angle 2a at the centre

:

(1) About an axis through its centre perpendicular to its

plane. Result. Ma^.

(2) About an axis through its middle point perpendicular

to its plane. Besult. 2M(i

(3) About the diameter which bisects the arc.

_ , ^^/ sin 2oL\ c?
Result, 1/1-

2a / 2

(4) About its chord.

2. The moment of inertia of a right cone of mass M
3

about the axis is if— V^, That about a straight line through
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the vertex perpendicular to the axis is M~ («^ + -j), and

about a slant side M— —5—7^ h^ , where a is the altitude of

the cone and h the radius of the base.

3. The moment of inertia of an arc of an equiangular

spiral measured from the pole to the extremity of the radius

vector r is if - r^ about an axis perpendicular to its plane

through the pole.

4. The moment of inertia of the part of a parabola cut

3
off by any ordinate at a distance x from the vertex is M~ a?

about the tangents at the vertex, and M^ about the principal

diameter, where y is the ordinate corresponding to x.

5. The moment of inertia of the lemniscate r^ = a^ cos 26
about a line through the origin, in its plane and perpendicular

to its axis is

48

6. The moment of inertia of a triangle about a line per-

pendicular to its plane through its centre of gravity is

36

where a, h, c are the sides of the triangle.

7. The surfaces of equal density in a heterogeneous

body are a family of closed similar and similarly situated

surfaces, having given the moment of inertia of a homoge-
neous body bounded by any one of these surfaces, find that

of the heterogeneous body about the same axis.

Let I) ^{a) be the moment of inertia of the homogeneous
body of density D, bounded by the surface whose parameter

is a, and let p be the density of the heterogeneous body along

{a' + -b' + c\
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this surface. Then p (j)'{a)da is the required moment of
•z

inertia.

Apply this method to find the moment of inertia about the

major axis of an ellipsoid whose strata of equal density are

similar concentric ellipsoids, the density along the major axis

varying as the distance from the centre.

Besult. 3ll{b' + c').
«/

2
8. The angle of an equiangular spiral is cot"^-, prove

o

that the principal axes of an arc subtending an angle—;^

—

tt

at the pole with respect to the pole, are inclined at an angle

— to the extreme radii vectores.
o

9. The principal axes of a right-angled triangle are one
perpendicular to the plane, and two others inclined to its sides

at the angle

1 , _i ab
tan

where a and b are the sides of the triangle adjacent to the

right angle.

10. Find the positions of the principal axes of a cube at

any given point.

11. Two particles, each of mass = m, are placed at the

extremities of the minor axis of an elliptic area of mass M.
Prove that two of the principal axes at any point of the cir-

cumference of the ellipse will be the tangent and normal to

the ellipse, provided ^=- ^^2?'

12. If \ , k^ be the radii of gyration of an elliptic lamina

about two conjugate diameters ^^ + t-2 is constant.
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13. The moment of inertia of an elliptic area about any
diameter is proportional inversely to the whole length of the

focal chord parallel to that diameter.

14. Find the locus of those diameters of an ellipsoid, the

moments of inertia about which are equal to the moment of

inertia about the mean axis.

15. Determine the conditions that there may be a point

such that the moment of inertia about every axis through that

point is the same.

Result. Two of the principal moments at the centre of

gravity must be equal, and each must be less than the third

principal moment. There are then two points in the axis of

unequal moment which satisfy the conditions.

16. If A', B\ C be the moments of inertia of a body
about any three straight lines at right angles meeting in a

point 0, and if ^, ^, (7 be the moments of inertia about the

three principal axes at 0, prove that

A' + B'+C'^A + B+C,

and that each of these quantities is equal to Smr^, where r is

the distance of any particle m of the body from 0.

17. If two principal moments of inertia of a body be
equal, the equation to a curve such that any tangent is a

principal axis at the point of contact is of the form

e==A^Br+ Cr'^-Dr^ + Er',
\\

its pole being the centre of gravity, and its plane passing
through the principal axis of unequal moment.

18. If A\ B, C be the moments of inertia about princi-

pal axes through a point P, A, B^ C those about principal

axes through the centre of gravity; prove that (1) when
A' + B' — & =A+ B— C the locus of F is one of the prin-

cipal planes through the centre of gravity
; (2) when

i^A' + V^ + V 0') WA' \^^/B-^J C) WB' +^/C'- ^fA')

WC'+s/A'-^^B)

\
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is constant, tlie locus Is an ellipsoid similar, similarly situated,

and concentric with the central ellipsoid at the centre of

gravity; (3) when B= C and each is less than A, and Plies
on a lemniscate of revolution, having for foci the points where
the central ellipsoid is a sphere, A' — B'=A—B, A and B
being the moments about the axes through P which pass

through the axis A.

19. The particles of a body attract an external point

according to the law of nature. Prove that the resultant

attraction on every external point can be the same as that of

a mass M collected at a fixed point only when (1) 31 is

equal to the mass of the attracting body, and (2) every axis of

the body at is a principal axis.



CHAPTER II.

d'alembert's peinciple, &c.

27. A RIGID body is a collection of material particles

connected together by invariable geometrical relations. Our
first attempt therefore to determine the motion of such a body
would be to write down the equations of the several particles

according to the principles laid down in treatises on Dynamics
of a particle, and then to eliminate the unknown reactions

between the particles, and thus obtain the equations of motion
of a rigid body.

But if we attempt to do this, we are at once stopped by
our ignorance of the nature of the actions of one particle on
another. It would be necessary to make some assumptions

in regard to these.

"We might assume first, that the action between two par-

ticles is along the line which joins them ; secondly, that the

action and reaction between any two are equal and opposite.

The equations of motion of each separate particle on
these assumptions may be easily written down. Suppose
there are n particles, then there will be 3w equations, and
as shown in Todhunter's Statics, Chap. VI. there must be at

least 3/1 — 6 unknown reactions. It is therefore clear that

after the elimination has been eifected there cannot be more
than 6 resulting equations free from the unknown reactions.

But if the equations are written down it will be seen

that the reactions enter into the equation in such a manner

I
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that we can always eliminate them, however numerous the

particles may be, and obtain six resulting equations.

But D'Alembert proposed a method by which these six

resulting equations may be obtained without writing down
the equations of motion of the several particles, and without

making any assumption as to the nature of their mutual
actions except the following :

—

" The Internal actions and reactions of any rigid system

in motion are in equilibrium amongst themselves."

28. Prop. To explain D^Alemhert^s Principle, and to

ohtain the equations of motion ofa rigid System.

Consider any particle of a system whose mass is m. Let
F be the resultant of the impressed forces, R the resultant of

the internal actions on m. Letybe the resultant acceleration

of the particle, which may be called the effective accelerating

force on m.

Then by Dynamics of a particle, mf is the resultant of F
and R; hence if we reverse the effective force on any particle,

the three forces F, R, mf are in equilibrium. If we apply

the same reasoning to every particle of the system, it is evi-

dent, that the whole group of forces mf wiU be in equilibrium

with the groups F and R.

. Now D'Alembert's principle asserts that the group of

forces R will itself be in equilibrium ; whence it follows that

the group of forces F will be in equilibrium with the group

7nf

Hence, if forces equal to the effective forces huf acting i7i

exactly opposite directions were applied at each point of the

system, these would he in equilibrium with the impressed

forces.

29. This proposition is usually called D'Alembert's prin-

ciple, and we may at once deduce from it the equations of

motion.

Let X, y, z be the co-ordinates of the particle m at tlie

time t referred to any set of rectangular axes fixed in space.

R.D. 3
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dj^x d^y d^z
Then -^^ , -^ , -^ will be the effective accelerations of

the particle.

Let X, y, Z be the impressed accelerating forces on the
same particle resolved parallel to the axes.

By D'Alembert's principle the forces

.,x-f), .(r-5 m {Z— dh
dt\

together with the similar forces on eveiy particle, will be in

equilibrium. Hence, by the principles of Statics, we have
the six general equations

(A),

These are obtained by resolving parallel to the axes.

d\ d^y

^'^[y-iA-

dt^

=^tm{yZ-^zY) (B).

Sm f z -^r^ — X^ J

= 2wi [zX — xZ)
J

These are obtained by taking moments about the axes.

In a precisely similar manner by taking the expressions

for the accelerations in Polar Co-ordinates, we should have

obtained another, but equivalent, set of equations of motion.

30. These six equations together with the geometrical re-

lations are sufficient for the deteimination of the motion of any
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system ; for the motion of a rigid body is known when the

motions of any three points not in one straight line are known.
By Geometry we can determine the co-ordinates of every

other particle of a rigid body in terras of the co-ordinates of

these three chosen points ; substituting in the equations of

motion we have six equations between the co-ordinates of the

three points. Joining these to the three geometrical equations

expressing the fact that the distance between any two of the

three points remains invariable, we have nine equations to

determine the nine co-ordinates of the three chosen points.

If there be more than one body in the system, the same thing

will be true for each body. If there be any unknown reac-

tions it is obvious that the very circumstance which causes

the reaction will give an additional geometrical equation.

31. In D'Alembert's principle no assumption has been
made as to the nature of the actions between the particles

;

hence the principle is true whether the particles be rigidly

connected or not. We may, for example, apply the principle

to the case of a fluid in motion or to any elastic or flexible

body.

The principle is in reality an extension of the first law of

motion. That law is equivalent to an assertion that the

molecular actions of the particles which constitute a body do
not afi'ect the motion of translation of that body. D'Alembert's
principle asserts further that they do not affect its motion
when that motion consists of a combination of a motion of

translation with one of rotation.

The truth of the principle cannot be established by
abstract reasoning. It must be considered as resting on ex-

perimental evidence, or rather on that inductive jproof which
is derived from the accurate coincidence of the results of cal-

culations founded on this principle with the observed motions
of a rigid body.

32. We have seen that the six general equations of

motion are sufficient for the solution of every Dynamical
Problem, but in their present form they are too complicated
to be of much use. Certain general principles have therefore

3—2
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been deduced from them which will gi'eatly facilitate their

application to any particular case. The two most important

01 these are

:

First The motion of the centre of gravity of a system

acted on hy any forces is the same as if all the mass were col-

lected at the centre of gravity, and all the forces were ajyplied

at that point parallel to theirformer directions.

Secondly. The motion of a hody acted on hy any forces.

about its centre ofgravity, is the same as if the centre ofgravity

were fixed, and the same forces acted on the hody.

These are called the '' Principles of the Conservation of

the Motions of translation and rotation."

The first principle follows from the set (A) of the general

equations of motion.

Taking any one of them we have

'rn^^^tiinX).

Let a;, y, z be the co-ordinates of the centre of gravity,

then

X . 2w = ^mx
;

d'^x ^ ^ d'^x.'.^tm=tm-j^

^tmX (1),

and the other two equations may be treated in a similar

manner.

But these are the equations which give the motions of a
mass ^m acted on by forces 2) [mX), &c. Hence the princi-

ple follows.

The second principle may he deduced from the set (B) of
the general equations of motion.



d'alembert's principle, &C. 37

Taking any one of them we have

Let X — ~x -\- X
y
y — "y Ar y\ z — ~z-\-z\

Substituting, the equation becomes

= tm{{x-\-x')Y-(Ji + y')X],

Expanding*, we get

_ ^ d'^y - ^ d'^x d^y ^ ,
d% ^

= xtmY-yXmX+{%mx'Y-y'X).„\ (3).

But ^m X = 0, and 2w 3^' = ;

/. 2m-^^, =0, andSm-^ = 0.

• This detnonstration may be much shortened by the consideration that the

origin of co-ordinates is quite arbitrary. Let it be so chosen that the centre of

gravity is passing through it at the moment under consideration. Then «= 0,

"^ = 0, and the equation becomes

But since S//ix' = 0, Smy'= 0, this at once reduces to the equation (4) in the

text.

It is obvious that the above transformation of the equation (2) might be

deduced from the general proposition in Art. 5. 7
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Hence the whole of the second line of the left-hand side of

equation (3) vanishes. Again,

^ tm = tm X, and J tm = tm Y.

Hence the above equation reduces to

and the other two equations may be treated in a similar way.

But these are exactly the equations we should have

obtained if we had regarded the centre of gravity as a fixed

point and taken it as the origin of moments. Hence the prin-

ciple follows.

33. From the two General Principles we may deduce

the following Corollaries.

First. If there be a system of bodies subject only to

their mutual actions, their centre of gravity is either at rest or

moves uniformly in a straight line.

By the term " mutual action" is meant any action of one

body of the system on another which is balanced by the equal

and opposite reaction of that other, such as their mutual at-

tractions or the tensions of any strings elastic or inelastic

joining two of the bodies.

The centre of gravity of the solar system, for example, is

either at rest or moves uniformly in a straight line ; the fixed

stars being supposed too distant to exert any perceptible

attraction.

Secondly. If a body be acted on by any number of forces

which are statically equivalent to a single force acting at each
instant through the centre of gravity of the body, then the

motion of the body about its centre of gravity will be undis-

turbed by the action of these forces.

Thus ifwe suppose the earth, planets, sun, &c. to be spherical

bodies such that the density of each varies as any function

I

I
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of the distance from tlie centre of that body, then the at-

traction of any one on any other would be the same as if

each were collected into one particle at its respective centre

of gravity. In this case therefore the rotation of each hea-

venly body is unaiFected by the attraction of all the others.

EXAMPLES.

1. Two particles moving in the same plane are projected

in parallel but opposite directions with velocities inversely

])roportional to their masses. Find the motion of their centre

of gravity.

2. A person is placed on a perfectly smooth table, show
how he may get off.

3. A person is placed at one end of a perfectly rough

board which rests on a smooth table. Supposing he walks to

the other end of the board, determine how much the board

has moved. Supposing that he stepped off the board, show
how to determine its subsequent motion.

4. The motion of the centre of gravity of a shell shot

from a gun in vacuo is a parabola, and its motion is unaffected

by the bursting of the shell.

5. A rod revolving uniformly in a horizontal plane round

a pivot at its extremity suddenly snaps in two: determine

the motion of each part.

6. A uniform chain of length c is held so that one ex-

tremity just touches an inelastic plane, and is only under the

action of a force in its length produced at a distance a on the

opposite side of the plane ; show that the last particle of the

chain when let go will strike the plane with a velocity

— . log
, fi being the absolute intensity of the force^/

which varies inversely as the square of the distance.



CHAPTER III.

MOTION ABOUT A FIXED AXIS.

34. Prop. To determine the motion of a body about a

fixed axis under the action ofany forces.

Let any plane passing through the axis and fixed in space

be taken as a plane of reference, and let 6 be the angle which

any other plane through the axis and fixed in the body, makes
with the first plane. Then our object is to determine ^ as a

function of t.

Take any element m of the body and let its radius vector r

perpendicular to the axis make an angle </> with the plane of

reference. The efi'ective moving forces on this element are
72 i Jji"!

^

mr—^ and —mr-^
,
perpendicular to and along the direc-

tion of r. If these, taken throughout the system, be reversed,

they will be in equilibrium with the impressed forces and
with the reactions at the axis.

Taking moments about the axis we have

where L is the moment of the impressed forces about the

axis.

Now since the particles of the body are rigidly connected

I
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with each other, it is obvious that —^ is the same for every

particle and equal to -j^ . Hence

(Pd _ moment of forces about axis

df moment of inertia about axis
*

This equation when integrated will give the values of 6

and -7- at any time, and thus the position and velocity of the

body will have been found.

35. Prop. A hody moves about a fixed horizontal axis

acted on hy gravity only^ to determine the motion.

Take the vertical plane through the axis as the plane of

reference, and the plane through the axis and the centre of

gravity as the plane fixed in the body. Then the equation of

motion is

d'^6 _ moment of forces .

df moment of inertia ^ '

_ Mgh sin 6

where h is the distance of the centre of gravity from the axis

and Mk^ is the moment of inertia of the body about an axis

through the centre of gravity parallel to the fixed axis.

Hence

S-^A^«^=<> (^)-

The equation (2) cannot be integrated in finite terms, but
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if the oscillations he. small, we may reject the cubes and higher

powers of 6 and the equation will become

Hence the time of a complete oscillation is

If h and Jc be measured in feet and g = 32-18, this formula

gives the time in seconds.

36. The equation of motion of a particle of any mass sus-

pended by a string I is

3+f--^=o (3)>

which may be deduced from equation (2) by putting

^ = and h = L

Hence the angular motions of the string and the body
under the same initial conditions will be identical if

• l^^^ (4).

This length is called the *' length of the simple equivalent

pendulum."

Through G, the centre of gravity of the body, draw a per-

pendicular to the axis of revolution cutting it in G. Then C
is called the centre of suspension. Produce CG to so that

CO = l. Then is called the centre of oscillation. If the

whole mass of the body were collected at the centre of oscilla-

tion and suspended by a thread to the centre of suspension, its

angular motion and time of oscillation would be the same as

that of the body imder the same initial circumstances.
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37. The equation (4) may be put under another form.

Since CG = h and OG=l—Ji, we have

CG, OG = h\

This equation shows that if be made the centre of suspen-

sion, the axis being parallel to the axis about which k was
taken, then G will be the centre of oscillation. Thus the

centres of oscillation and suspension are convertible and the

time of oscillation about each is the same.

38. If the time of oscillation be given, I is given and the

equation (4) will give two values of A. Let these values be
Aj, \, Let two cylinders be described with that straight line

as axis about which the radius of gyration k was taken, and
let the radii of these cylinders be\, h^. Then the times of

oscillation of the body about any generating lines of these

cylinders are the same, and are approximately equal to

^i^-l
39. To find the axis of suspension parallel to a fixed

line in the body such that the time of oscillation is a minimum
it will be sufficient to make I a minimum. Now

^^ h'^ + k^

Differentiating, k being a constant as before, we have

= 1--^;

.-. h = k.

About G as centre describe a circle with radius k in the plane
perpendicular to the fixed line. Then the time of oscillation

about any axis through the circumference of this circle is less

than if the axis had been taken nearer to or further off from
the centre of gravity.
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Since ^j^2 = A:*, we have in this case h^ = \, each being
= 1c, and the two cylinders above mentioned become identical.

In this case the length I of the simple equivalent pendulmn
is = 2k,

The time of oscillation about the axis thtis found is not

an absolute minimum. It is a minimum for all axes drawn
parallel to a given straight line in the body. To find the

axis about which the time is absolutely a minimum we must
find the axis about which h is a minimum. Now it is proved
in Art. 11, that of all axes through G the axis about which
the moment of inertia is least or greatest is one of the prin-

cipal axes. Hence the axis about which the time of oscilla-

tion is a minimum is parallel to that principal axis througli

G about which the moment of inertia is least. And if MIc'

be the moment of inertia about that axis, the axis of suspen-

sion is at a distance h measured in any direction from the

principal axis.

Prop. A body moves about a fixed axis under the action

of any forces, to find the pressures on the axis,

40. First, Suppose the body and the forces to be sym-
metrical about the plane through . the centre of gravity per-
pendicular to the axis. Then it is evident that the pressures
on the axis are reducible to a single force at G the centre

of suspension.

Let F, G be the actions of the point of support on the

body resolved along and perpendicular to CG, Let X, Y be
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the sum of tlie resolved parts of the impressed forces in the

same directions, and L their moment round (7.

Let CG = h and 6 = angle which CG makes with any
straight line fixed in space.

Taking moments about C, we have

d'd L
(1).

The motion of the centre of gravity is the same as if all

the forces acted at that point. Now it describes a circle

round G\ hence, taking the tangential and normal resolutions,

we have

''^=^r (2)

^-dt

Equation (1) gives the values of -^ and -j , and then

the pressures may be found by equations (2) and (3).

If the only force acting on the body be that of gravity,

and if the body start from rest in that position which makes
GG horizontal, then we have

Mg^mO, L = - Mgli sin ^

;

•^ sm 0,

x=%cos^, :r=

d'e
•• df

integrating, we have

dd

dt

2

but when ^ = —
,

-=-
^ dt

var

M' + K

vanishes, therefore (7 = 0, substituting

these values in (2) and (3), we get
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where 6 is the angle which CG makes with the vertical.

Let i|r be the angle the direction of the pressure at C
makes with the line GG, the angle being measured from GG
downwards to the left, then

cot i/r = ^1 + 3 T2) cot e,

I

which is a convenient formula to determine the direction of

the pressure*.

41. Secondly, Suppose either the body or the forces

not to be symmetrical.

Let the fixed axis be taken as the axis of z with any
origin and plane of xz. These we shall afterwards so choose

as to simplify our process as much as possible. Let 5, y, ~z

be the co-ordinates of the centre of gravity at the time t, M
Let 0) be the angular velocity of the body, / the angular

acceleration, so that

jf_da
'^~ at

'

* Let tnR be the resultant ofF and G, and let

i^ + h^ ""k^ + h^*

^- cos^^^ sin^^ 1
then ___+__ = _.

Construct an ellipse with C for centre and axes equal to a and h measureJ.
along and

.
perpendicular to CG. Then the resultant pressure varies as the

diameter along which it acts. And the direction may be found thus ; let th3
auxiliary circle cut the vertical in V, and let the perpendicular from V on
CG cut the ellipse in R. Then CJR is the dii-ection of the pressure.
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Now every element m of the body describes a circle about

the axis, hence its accelerations along and perpendicular to

the radius vector r from the axis are — ©V and^r. Let 6 be

the angle which r makes with the plane of xz at any time,

then from the resolution of forces it is clear that

ay
df

— co^r cos 6 —fr sin Q

: - aPy \-fx
I

These equations may also be obtained by differentiating

the equations

ic = r cos ^, y = t^\vlO

twice, remembering that r is constant.

Conceive the body to be fixed to the axis at two points,

distant a and a from the origin, and let the reactions of the

points on the body resolved parallel to the axes be re-

spectively F, G, H) F\ G\ H\

The equations of motion then give

dt

= '%m (— (o^x —fy)

(1),
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^.-oy'My-^fMx (2),

= 0.. .(3).

Taking moments about the axes, we have

tm {yZ-zY) - Ga- G'a! = 2m ^3^ -^ - s -^

= (o'^^myz —f^mxz (4)

,

"by merely introducing z into the results in (2),

/ d^x d^z\
tm [zX - xZ) + i^a + F'o! = tm{z-^-x -^j

= — oy^^mxz —ftmyz (5)

,

tm{xY-yX)
;

=tm(x^-y^^

= Mk\f (6)

Equation (6) serves to deterraine / and a>, and equations

(1), (2), (4), (5) then determine F, G, F', G' ; Hand H' are/

indeterminate, but their sum is given by equation (3). 1

Looking at these equations, we see that they would be]

greatly simplified in two cases.
'
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First, if the axis of 2 be a principal axis at tlie origin,

^mxz — 0, ^myz — 0,

and the calculation of the right-hand sides of equations (4) and

(5) would only be so much superfluous labour. Hence, in at-

tempting a problem of this kind, we should, when possible, so

choose the origin that the axis of revolution is a principal axis

of the body at that point.

Secondly, except the determination of/ and (o bj inte-

grating equation (6), the whole process is merely an algebraic

substitution of/ and w in the remaining equations. Hence our

results will still be correct if we choose the plane of xz to con-

tain the centre of gravity at the moment under consideration

;

this will make ^ = 0, and thus equations (1) and (2) will be
simplified.

42. Prop. A tody having one jpoint fixed and acted

on hy no impressed forces is set in rotation about an axis,

to determine the conditions under which it will continue to

rotate about that axis.

Let this fixed point be taken as origin, and the initial

axis of rotation as the axis of z. Let this axis be supposed
fixed at any other point. Now if the pressures at this second

point be zero, it is evident that no force will be required

to keep the axis in its place, and the body will, even if

no second point be fixed, permanently rotate about this axis.

The conditions therefore of a permanent axis of rotation

will be found by putting F' = 0, G' = 0, a=0 in the equa-

tions of the last proposition.

Since there are no impressed forces, equation (6) gives

in that case /= ; (4) and (5) give

^mxz =
I

Xmyz = J

(1), (2), (3) give the pressures on the fixed point.

Hence, if a body having one point fixed be set in ro-

tation about any axis, it will not continue to rotate about

that axis, unless it be a principal axis of the body at the

fixed point.

K. D. 4
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If the "body "be entirely free, we must also have ^=0,
G = 0, H=0. In this case equations (1) and (2) give x=0,
y=0. Hence the axis of revolution must pass through the

centre of gravity, and be a principal axis at every point

in its length.

43. Prop. To determine the forces which must act on a
body at reM^ and fixed at one point, that it may begin to

rotate about any proposed straight line through that point.

Suppose this straight line to become fixed in space at

some other point, then the forces must be such that the re-

actions at this second point are zero.

Let the fixed point be taken as the origin, and this

straight line as the axis of 2, and let the plane of xz contain

the centre of gravity of the body at the beginning of the

motion. Then ^ = 0. Also since the body is initially at

rest, 6) = 0. Then the equations of Art. 41 become

tmY-\-G = \ (1),

tmZ-^B-vB' ^^ J

Sw {yZ— zY)= —f. %mxz

Sm [zX— xZ) = —f, ^myz

tm[xY-yX)= f.M¥'
The equations (1) determine only the pressures on the

fixed point. The second set show that the moments of the
forces about the axes must be proportional to

— Xmxz, — ^myz, Mh'^,

The forces must therefore be equivalent to a single re-

sultant force at the fixed point, and a single resultant couple,

acting in a plane, whose equation is

- 'Zmxz . X- tmyz . r+ MJd^Z= 0.

Let the momental ellipsoid at the fixed point be constructed,
and let its equation be

AX'^ + BY' + CZ'-'^DYZ-^EZX- 2FXY^ e\
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The equation to the diametral plane of the axis of z is

-EX-I)Y+CZ=0.

Hence the plane of the resultant couple must be the

diametral plane of the axis of rotation.

The body will not in general continue to rotate about
this axis.

44. Ex. 1. A door is suspended hy two hinges from a
fixed axis making an angle a with the vertical. Find the

motion and pressures on the hinges.

Since the fixed axis is evidently a principal axis at the

middle point, we shall take this point for origin. Also we
shall take the plane of xz so that it contains the centre of

gravity of the door at the moment under consideration.

The only force acting on the door is gravity, which may
be supposed to act at the centre of gravity. We must first

resolve this parallel to the axes. Let <^ be the angle the

plane of the door makes with a vertical plane through the

\
axis of suspension. If we draw a plane ZON such that its

trace ON on the plane of XOY makes an angle <^ with the

axis of a:, this will be the vertical plane through the axis,

4—2
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and if we draw OV in this plane making ZOV== a, OF will

be vertical. Hence the resolved parts of gravity are

X= ^ sin a cos (j), Y=g sin a sin ^,

^= — ^cosa.

The six equations of motion are

Mg ainacos (j> + F+ F' — 2m -^

= Sm . (— (o^x)

r^-CO^II^ (1),

t= tm (fx)

^fMx (2),

d'^z— i^ cos a+ H-\- H' = 2m -r^

= (3),

--Ga-¥G'a=^0 (4),

3J^ cos a 5 + i^a - i^'a = (5),

because the fixed axis is a principal axis

d^<h
^MgamtLam^,x = Mh'^ ,

~~ (6).

Integrating the last equation, we have

C-\-2g sin a cos </)i = h"^(o^.

Suppose the door to be initially placed at rest, with its

plane making an angle fi with the vertical plane through
the axis; then when <^ = /S, g) = 0; hence

Jc^to^ = 2g sin a (cos <j> — cos ^) \

and Jc'y= — ^ sin a sin ^ .
^

j
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By substitution in the first four equations Fy F\ G, G ',

may be found.

Ex. 2. A perfectly rough circular horizontal hoard is

capable of revolving freely round a vertical axis through its

centre. A man whose weight is equal to that of the hoard walJcs

on and round it at the edge : when he has completed the circuit

what will he his position in spacef

Let a be the radius of the board, Mk^ its moment of

inertia about the vertical axis. Let o) be the angular velocity

of the board, (o that of the man about the vertical axis at any
time. And let F be the action between the feet of the man
and the board.

The equation of motion of the board is by Art. 34

^%=-F'^ (!)•

The equation of motion of the man is by Art. 32

^«f=^- (^)-

Eliminating F and integrating, we get

1^(o + «*&)' = 0,

the constant being nothing, because the man and board start

from rest.

Let B, & be the angles described by the board and man
round the vertical axis.

Then 0, = ^, a,'=^,and

Hence, when 6' — 6=^ 27r, we have

This gives the angle in space described by the man.
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If k'^"^ we have (9'=§7r.

Let V be the mean relative velocity with which the man
walks along the board. Then

V
ft) — ft) = —

:

Va
'• -

k' + d'

__2 F
~

S a'

This gives the mean angular velocity of the board.

45. The oscillations of a rigid body may be made use of

to determine the numerical value of the accelerating force of

gravity. Let L be the lenjo^th of a simple equivalent pendu-

lum of any body, and let T be the time of a complete oscilla-

tion. Then we have when the oscillations are small,

'=-Vf
Thus g can be determined as soon as L and T are known.

The simplest body to make use of for this purpose is a
straight rod, drawn as a wire, and suspended from one ex-

tremity. It is easily proved that the centre of oscillation is at

a distance from the point of suspension two-thirds of the length

of the rod. Thus L is known. T may be found by comparing
its oscillations with those of the pendulum of a clock.

By inverting the rod and taking the mean of the results in

each position any error arising from want of uniformity in

density or figure may be partially obviated. But it is very
difficult to obtain a rod so uniform as to give results sufficiently

accordant with each other. Captain Kater therefore proposed
to use the property (Art. 37) of the convertibility of the cen-

tres of suspension and oscillation to obtain more accurate

results. FhiL Trans. 1818.
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Let a "body, fumislied with a moveable weight, be pro-

vided with a point of suspension (7, and another point on which
it may vibrate, fixed as nearly as can be estimated in the

centre of oscillation (9, and in a line with the point of suspen-

sion and the centre of gravity. The oscillations of the body
must now be observed when suspended from C and also when
suspended from 0. If the vibrations in each position should

not be equal in equal times, they may readily be niade so by
shifting the moveable weight. When this is done, the distance

between the two points C and 0, is the length of the simple

equivalent pendulum. Thus the length L and the correspond-

ing time T of vibration will be found uninfluenced by any
irregularity of density or figure. In these experiments, after

numerous trials of spheres, &c. knife edges were preferred

as a means of support. At the centres of suspension and
oscillation there were two triangular apertures to admit the

knife edges on which the body rested while making its

oscillations.

46. Having thus the means of measuring the length

L with accuracy, it remains to determine the time T. This

is effected by comparing the vibrations of the body with

those of a clock. The time of a single vibration or of any
small arbitrary number of vibrations cannot be observed

directly, because this would require the fraction of a second

of time, as shown by the clock, to be estimated either by the

eye or ear. The vibrations of the body may be counted, and
here there is no fraction to be estimated, but these vibrations

will not probably fit in with the oscillations of the clock pen-

dulum, and the differences must be estimated. This defect is

overcome by "the method of coincidences." Supposing the

time of vibration of the clock to be a little less than that of the

body, the pendulum of the clock will gain on the body, and
at length at a certain vibration the two will for an instant

coincide. The two pendulums will now be seen to separate

and after a time will again approach each other, when the

same phenomenon will take place. If the two pendulums
continued to vibrate with perfect uniformity, the number of

oscillations of the pendulum of the clock in this interval will

be an integer, and the number of oscillations of the body in

the same interval will be less by one complete oscillation
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than that of the pendulum of the clock. Hence by a simple

proportion the time of a complete oscillation may be found.

The coincidences were determined in the following man-
ner. Certain marks made on the two pendulums were ob-

served by a telescope at the lowest point of their arcs of

vibration. The field of view was limited by a diaphragm to

a narrow aperture across which the marks were seen to pass.

At each succeeding vibration the clock pendulum follows the

other more closely, and at last the clock-mark completely

covers the other during their passage across the field of view

of the telescope. After a few vibrations it appears again pre-

ceding the other. The time of disappearance was generally

considered as the time of coincidence of the vibrations, though

in strictness the mean of the times of disappearance and re-

appearance ought to have been taken, but the error thus pro-

duced is evidently very small. Encyc, Met, Figure of the

Earth. In the experiments made in Harton coal-pit in 1854,

the Astronomer Royal used Kater's method of observing the

pendulum, (PAiY. Trans, 1856.)

The value of T thus found will require several corrections.

These are called '* Reductions." If the centre of oscillation

do not describe a cycloid, allowance must be made for the

alteration of time depending on the arc described. This is

called " the reduction to infinitely small arcs.'* If the point of
support be not absolutely fixed, another correction is required

{Phil, Trans, 1831). The effect of the buoyancy and the

resistance of the air must also be allowed for. This is the
" reduction to a vacuum." The length L must also be cor-

rected for changes of temperature.

The time of an oscillation thus corrected enables us to find

the value of gravity at the place of observation. A correction

is now required to reduce this result to what it would have
been at the level of the sea. The attraction of the interven-

ing land must be allowed for by Dr Young's rule (Phil,

Trans. 1819). We thus obtain the force of gravity at the
level of the sea, supposing all the land above this level were
cut off and the sea constrained to keep its present level. As
the sea would tend in such a case to change its level, further

corrections are still necessary if we wish to reduce the result
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to the surface of that spheroid which most nearly represents

the earth. See Camb, PhiL Trans, Vol. X.

47. There is another use to which the experimental de-

termination of the length of a simple equivalent pendulum
may be applied. " It has been adopted as a standard of

length on account of being invariable and capable at any
time of recovery. An Act of Parliament, 5 Geo. IV. defines

the yard to contain 36 such parts, of which parts there are

39*1393 in the length of a pendulum vibrating seconds of

mean time in the latitude of London in vacuo at the level of

the sea at temperature 62° F. The Commissioners, however,

appointed to consider the mode of restoring the standards of

weight and measure which were lost by fire in 1834, report

that several elements of reduction of pendulum experiments

are yet doubtful or erroneous, so that the results of a convert-

ible pendulum are not so trustworthy as to serve for supply-

ing a standard of length ; and they recommend a material

standard, the distance namely between two marks on a certain

bar of metal under given circumstances, in preference to any
standard derived from measuring phenomena in nature (JSe-

portf 1841)." Griffin's Dynamics of a Rigid Body, page 24.

EXAMPLES.

1. Find the time of the small oscillations of a cube (1)

when one side is fixed, (2) when the diagonal of one of its

faces is fixed ; the axis in both cases being horizontal.

Result, The length of the simple equivalent pendulum

is in the first case -—— a, in the second - a, where 2a is the

side of the cube.

2. Find the eccentricity of an elliptic lamina such that

when it swings about one latus rectum, the other latus rectum
may pass through the centre of oscillation.

Residt, The eccentricity = J.
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3. A circular arc oscillates about an axis through its

middle point perpendicular to the plane of the arc.^ Prove

that the length of the simple equivalent pendulum is inde-

pendent of the length of the arc and is equal to twice the

radius of the arc.

4. A heavy uniform quadrant is attached to a horizontal

axis at the extremities of one of its bounding radii, and

revolves about it ; determine the action on the points of sup-

port, the quadrant being originally horizontal.

5. Find what axis in the area of an ellipse must be

fixed in order that the time of a small oscillation may be

a mmimum.

6. The density of a rod varies as the distance from one

end. Find the axis perpendicular to it about which the time

of oscillation is a minimum.

Result. The axis passes through either of two points-j

whose distance from the centre of gravity is — a, where aj

is the length of the rod.

7. A rod is fixed at one extremity to an axis about

which it can freely oscillate. The angle between the rod and
the axis is a, find the angle y8 which the axis must make
with the vertical in order that the rod may oscillate in n
seconds of time.

8. Find the time of oscillation of a rectangle about a
horizontal axis passing through the middle point of the upper
side, perpendicular to the line through that point bisecting

the rectangle, and making an angle a with the upper side.

I
9. A pyramid whose base is an equilateral triangle and

whose faces are given isosceles triangles being made to turn
about a fixed edge of its base, is left to itself immediately 'i'

after passing the position of unstable equilibrium; find the
angular velocity in any position.
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10. The centre of oscillation of a pendulum is retarded

by a constant force = ng : prove that in small oscillations the

decrement of the angle of ascent is nearlj equal to 2n,

11. In the case of motion about a horizontal axis under
the action of gravity, shew that the forces are reducible to a

single force, if the axis be a principal axis at the point where
the perpendicular upon it from the centre of gravity meets it

;

and not otherwise. If the axis be a principal axis, but at

another point in it, and if the centre of gravity start from
the horizontal plane passing through the axis ; determine the

pressures.

12. A uniform rod is revolving about a horizontal axis

which passes through it at a distance h from the further end.

Shew that the tendency to break is greatest at a point of the

rod distant from that end double the difference between h and
the length of the equivalent isochronous simple pendulum for

all positions of the rod.

13. A rod is inclined at an angle of 30° to an axis about

which it revolves with uniform angular velocity. Supposing
gravity to be neglected, compare the tendencies to break at

different points of the rod.

14. A uniform beam, moveable about a hinge at one

extremity, is supported at the other by an elastic string fas-

tened to a point at a distance c vertically above the hinge, so

that the string and beam are, in the position of equilibrium,

at right angles. Shew that if in that position the stretched

length of the string is twice the natural length, the simple

2c
equivalent pendulum is of length — .

o

15. A uniform stick hangs freely by one end, the other

end being close to the ground. An angular velocity in a

vertical plane is then communicated to the stick, and when
it has risen through an angle of 90°, the end by which it was
hanging is loosed. What must be the initial angular velocity
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SO that on falling to the ground it may pitch in an upright
position ?

16. A uniform circular plate radius a is capable of re-

volving about a smooth horizontal axis through its centre,

a rough string equal in mass to the plate and in length to its

circumference hangs over its rim in equilibrium ; shew that

the velocity of the string when it begins to leave the plate

is ,J^.



CHAPTER IV.

MOTION IN TWO DIMENSIONS.

Sect. I. Fixed Axes,

48. There are two principles which will in general con-

fluct us to the solution of every dynamical problem. These
have been already demonstrated and may be briefly enunciated

thus.

(1) The motion of the centre of gravity of a rigid body is

the same as if all the mass were collected at that point and
was acted on by all the forces applied at that point parallel

to their original directions.

(2) The motion of rotation round the centre of gravity is

the same as if that point were fixed.

The first of these principles enables us to write down the

equations of the motion of the centre of gravity. The question

is one of Dynamics of a Particle. There are three sets of

equations which we may use.

First, The equations in rectilinear co-ordinates,

Secondly, The equations in polar co-ordinates,

d^_-dl
df '^ dt ^' r dt K dt) ^'
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Thirdly, The equations expressing the accelerations

along the tangent and normal,

where S and N are the resolved parts of impressed forces

along the tangent and normal in the directions in which i

and p are respectively measured. The quantities S, y, r, 6,

are the co-ordinates of the centre of gravity, v its velocity,

and p the radius of curvature of its path.

The second principle will enable us to regard the centre

of gravity as a fixed point. The motion is then reduced to

that about a fixed axis. The equation to such a motion is

d^d moment of forces

dt^ moment of inertia

where 6 is the angle made by any fixed straight line in the

body with any fixed straight line in space.

These considerations will furnish us with three equations

of motion for every rigid body in the system under considera-

tion. These may be called the Dynamical equations. It is

obvious that as a body in two dimensions can admit of only

three independent motions, no more than three equations to

determine these can be obtained. These three independent

motions are the two velocities of translation parallel to the

axes and the velocity of rotation.

Besides these there will be certain geometrical equations

expressing the given connections of the system. As every

such forced connection is necessarily accompanied by a reac-

tion and every reaction by some forced connection, the number
of geometrical equations will also be the same as the number
of unknown reactions in the problem. If however any sub-
sidiaiy quantity has been introduced there must be a new
geometrical equation for every such quantity.

49. Having obtained a sufficient number of equations of
motion we must proceed to their solution. Two general
methods have been proposed.

I

I
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First Method. Differentiate the geometrical equations

twice with respect to t, and substitute for -y^ , -^ , -r^

,

from the dynamical equations. We shall then have a suf-

ficient number of equations to determine the reactions. This
method will be of great advantage whenever the geometrical

equations are of the form

Ax+By+ Ce = n (1),

where A, B, C, D are constants. Suppose also that the

dynamical equations are such that when written in the form

5l = &c.
dt'

> (2)

they contain only the reactions and constants on the right-

hand side without any x, y, or 6. Then, when we substitute

in the equation

obtained by differentiating (1), we have an equation contain-

ing only the reactions and constants. This being true for all

the geometrical relations, it is evident that all the reactions

will be constant throughout the motion and their values may
be found. Hence when these values are substituted in the

dynamical equations (2), their right-hand members will all

be constants and the values of x, y, and 6 may be found by
an easy integration.

If however the geometrical equations are not of the

form (1), this method of solution will usually fail. For sup-

pose any geometrical equation took the form

t

x' +f = <?,

ntaining squares instead of first powers, then its second
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differential equation will be

df ^y df ^ dt\^ dt
= 0;

d'^x d^y
and though we can substitute hi -^ , ^, we cannot in.

dx
general eliminate the terms -r

2 -, 12

1

50. Second Method. Suppose the system to consist of

only one body of mass m, and let the equations of motion be

written in the form

m

df

d^
dt

BB + ,.

J
where A, B, G are the coefficients of some unknown reaction

B which may enter into all the equations. Multiplying these

equations respectively by 2 4- > 2 -^ and 2 -j- , and adding,

we get

„ dx d'^x ^ dy d\ ^ ,^de d^d

di df di df

-(^S*^l+4>+-
then it will be proved in a subsequent chapter that, by vii-tue

of the geometrical equations, the coefficient of B will vanish.

And in the same way all the other unknown reactions will

disappear from the equation.
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Integrating this equation we get

^^\~^) "^^(t^) "^^^1777/ ~ known function of x, y,

and 6.

If there be two geometrical equations we shall be able to

express x and y in terms of ^, and substituting we shall have
7/3

-^ = known function of 6,
dt

This when solved will enable us to determine ic, y, and 6
as functions of t.

If there be only one geometrical equation there will be
only one unknown reaction in the original equations (2). This
must be eliminated from the equations by some process differ-

ent jfi'om that described above, and adapted to the particular

case in question. It is obvious there cannot be more than
two independent geometrical relations, for then no motion
would in general be possible.

If there be several bodies in the proposed Dynamical
System, the same process will apply. Each set of equations

must be multiplied by the factors above described and all the

sets must be added together.

This method, with a few exceptions, will give a first

integral of the original equations free from any unknown
reactions. If the whole system of bodies be so connected by
its geometrical relations that only one independent motion of

the whole system is possible this one equation will be sufficient

to give that motion.

This is called the method of vis viva, and the cases of

exception will be considered under that head,

51. Ex. 1. A sphere whose centre of gravity is in its

centre rolls down a perfectly rough inclined plane. Find the

motion.

Let a be the inclination of the plane to the horizon, a the

radius of the sphere, mT^ its moment of inertia about a l^ori-

zontal diameter.

Let be that point of the inclined plane at which the

sphere originally started, andN the point of contact at time t.

R. D. 5
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Then it obviously is best to choose for origin and ON for

the axis of x. The forces which act on the sphere are first,

^
the reaction R perpendicular to ON^ secondly, F the friction

acting at N along NO, and mg acting vertically at G the

centre.

Then the first principle gives the equations

^ = ^sma-- (1),

J = -gcosa + - (2).

The second principle gives

W~^ ^^'

where 6 may be taken to be the angle which the radius whose
extremity originally coincided with 0, makes with the normal
to the inclined plane. Then 6 is the angle turned through by
the sphere.

Since there are two unknown reactions, jPand B, we re-

quire two geometrical equations. Since there is no slipping

we have

x^ad (4). I
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Also since there is no jiunping

3/ = «

$7

(5).

Both these equations are of the form described in the first

method. Hence differentiating twice

de'"' df

d^V

dt
"

J

Substituting from (1), (2), (3),

F Fa^
asm a = —70
'^ m m/iT

g cos a =

Hence F=m

R = mg cos a

j.^sma
(6).

If the sphere be homogeneous ^^ — -= c^, and we have

Hence

1^ ^-mg sm a.

^ = y^sma.

If the sphere had been a particle sliding down a smooth

plane the equation of motion would have been

d'^x^=^sma.

5
So that the acceleration of the rolling sphere is just - of

5—2
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that of the particle. Supposing the sphere to start initially

from rest, we have clearly

15. „

and the whole motion is determined.

It is usual to delay the substitution of the value of 1^ in

the equations until the end of the investigation, for this value

is often very complicated. But there is another advantage.

It serves as a verification of the signs in our original equa-

tions, for if equation (6) had been

h^

we should have expected some error, for it seems clear that

the friction could not be made infinite by any alteration of the

internal structure of the sphere.

52. Ex. 2. A sphere rolls dovm another perfectly rough
fixed sphere. Find the motion.

Let a and h be the radii of the moving and fixed sphere,]

respectively, C and the two centres.

Let OB be a vertical radius of the fixed sphere, and
<p=^^ BOC, Let F andE be the firiction and normal reaction
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at N. Then taking the tangential and normal resolutions,

the equations for the motion of G are

(a + 5)^f=^sin<^-^ (1),

(« + ^)f = 9"^^^^-- • (2).m

LetA he that point of the moving sphere which originally

coincided with B. Then if 6 be the angle which any fixed

line GA in the body makes with any fixed line in space as the

vertical, we have

df ~m¥ ^
^'

It should be observed that we cannot take 6 as the angle

AGO because, though GA is fixed in the body, (70 is not
fixed in space.

The geometrical equation is clearly

a{e-^) = h^ (4).

No other is wanted, since in forming equations (1) and (2)

the constancy of the distance GO has been already supposed.

The form of equation (4) shews that we can apply the first

method. We thus obtain

and we are finally led to the equation

By multiplying by 2 -^ and integrating we get after de-

termining the constant
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dt \ 7 a + ^>
^ ^^'

the rolling tody being supposed to start from rest at a point

indefinitely near B,

To find where the body leaves the sphere we must put

^ = 0. This gives by (2)

«'+*)t ^ cos <^

;

10
•• Y^(l-cos^)=^cos0;

/. cos
<f>

10

17

53. Ex. 3. A rod OA can turn about a Mnge at 0,
while the end A rests on a smooth wedge which can slide along

a sjnooth horizontal plane through 0. Find the motion.

Let a = the inclination of the wedge, M = its mass and

Let Z=the length of the beam, m = its mass and 6 = A0C.
Let R = the reaction at A. Then we have

the dynamical equations,

d^x _ R sin a

~de~'~M~ (1),
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(2),

,2/j Rl . COS {oi — 6) —mg - cos 6
d v £

"d?" ml?
•*"

and the geometrical equation^

x = -X-.sm{a-e) (3).
sma

It is obvious we must apply the second method of solu-

tion. Hence

^^^dxd^x ^ T^d6d^6 , ^d0
2-^-j7 —r^ + 2?wAJ ^7 -75 = -mgl cos 0-j-

dt df dt df ^ dt

+ 2^ jsin a -^ + Z cos (a - ^)— k
[

at dt)

The coefficient of R is seen to vanish by differentiating

equation (3). Integrating we have

Substituting from (3) we have

\M:^ cos' (a - 6') + mJc\ i^= C - mgl sin 6,

If the beam start from rest when ^ = /3, then C= mgl sin yS.

This equation cannot be integrated any further. We can-

not therefore find 6 in terms of t. But the angular velocity of

the beam, and therefore the velocity of the wedge, is given by
the above equation.

54. The nature of the action of one part OP of the

rod on the remaining part PA may be found as follows.

When a rod is under the action of forces in equilibrium,

we know from Statics that this action is equivalent to the

resultants of all the forces which act on one side of P,
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These will generally be equivalent to a force and a couple.

The latter is the most important part of the action, and is

called the "Tendency to Break."

Let du be any element of the rod distant u from P,

and on the side of P nearer the end A of the rod, and let

PA = z. The effective moving forces on du are

du d'd . du IdT

respectively perpendicular to and along the rod. The im-

pressed force is m -j-.g. The effective forces being reversed,
t

the tendency to break at P is equal to the moment about P,

of all the forces which act on the part PA of the rod. If

this be called Z, we have

^ [^ ( du d^d ^ ^
du J r>X = I \m -J . -r^ u -\- m -yQu cos dY — Hz

d^Q
and the values of ~t^ and B, must be substituted.

55. When any of the bodies in the system are not per-

fectly rough, we know that the friction will be different accord-

ing as the body only rolls, or partly rolls and partly slides.

The difficulty in such a case is to determine which of these

two possible motions is the actual one. The usual method is

to take the friction to be F, assuming the body to roll. Then
solving the equations on this supposition, we can determine

the ratio -^ , where E is the normal reaction. If this ratio

be less than /t, the supposition was correct. If not there

will be sliding, and we should take the friction = /z.j5.
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Ex. 4. A sphere is placed on a fixed rough mcUned
plane, the coefficient of friction being /a, determine whether

the sphere will slide or roll.

Taking the same figure and notation as in Example 1,

we have

F 2 ,

^ = -tana,

2
if then ii> - tan a, the solution there given is correct. If

IL be less than this value, the equations will be

d'x . iiU

df-3 '''''' m^

O = qcosa ,

d'd fiRoi

dt " mW '

ice we have

d'x ,. J-^ = ^(sma-/xcosa)
j

d^d iiqa
I

and the motion is evidently one of constant acceleration.
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Sect. II. Moving Axes.

56. There are many problems in Rigid Dynamics which
can be easily solved by a proper use of moving axes. We
shall now proceed to determine the equations of motion of

a body with reference to axes moving in any manner what-
ever. Two sets of equations are clearly necessary, first the

equations expressing the motion of translation, and secondly

those expressing the motion of rotation.

57. Prop. I. To determine the equations of motion of
a point with reference to two rectangular co-ordinate axes f, t/,

moving according to a given law, the origin heing supposed

fixed.

Let Ox, Oy, be any two fixed axes ; Of, Or], moving axes,

i\

y
p

\

^?

~b
.^<e

X

and let the angle xO^=6, then since 0M=^, FM=rj, we
have

a; = f cos ^ — t; sin ^

;

- (f cos ^ - 77 sin 6) (~j - {^sine+rj cos 6)^ .
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This equation gives the acceleration of P parallel to any
fixed straight line Ox, If then we so choose the axis of

X that the straight line 0^ is just passing through it at

the moment under consideration, this equation will also give

the acceleration along Of at that instant.

But at that instant ^ = ; hence

de~ de ^ \dt) rjdtv dt) ^
^'

is the acceleration along Of. And as the same reasoning

will apply at every other instant this must be always the

acceleration along Of.

Similarly by putting 6 = — —
, we can show that the

acceleration along Orj is

d'x

4?-'(i)"-H.(^f) «•

And the equations of motion can be formed by equating

these two expressions to the resolved parts of the forces

in the two directions Of, Orj,

58. There is another demonstration which may be given

of these two equations which is so simple that it will at

once enable us to remember them. •

It is evident that the motion of P is made up of the

motions of the two points M and N by simple additions.

But the accelerations of M are

g-sS)\lon,OM
dt' ^ v^^

^dt
^ -T-

J
perpendicular to OM
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and the accelerations of N are

Hence adding these together with their proper signs as

shown bj the arrows in the figure, we have

§ ~ ' 0' +
? ^« ( ^S = ^««eleration along 0,».

59. If the moving axes revolve with uniform angular

velocity ©, the above equations take the simple form

where X and Y are the resolved parts of the accelerating

forces along the moving axes.

60. It will frequently be found convenient to use Greek
letters to express the co-ordinates of a particle when referred

to moving axes, and English letters when referred to Jixed

axes.

61. Ex. A particle slides along a smooth curve which
turns with uniform angular velocity (o about a fixed point 0.

To find the motion of the particle.

• These equations were first published in Vol. X. of the Cambridge Phil.

Trans. They have been independently obtained by several persons, and were
again published in the Quarterly Journal of Mathematics, 1858.
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Take 0^, Or] axes moving with the curve, and let

E be the reaction at any point. Then we have the equa-

tions

Let i; be the velocity relative to the curve, then re-

membering that 0) is constant, these equations reduce to

d'i ,, (R
-HS"

-Hi.
These are the equations of motion of a particle moving

along . a fixed curve and acted on by a repulsive force (t^r

tending from 0, with 2(ov written for J?.m

To find the motion we may therefore treat the curve as

fixed. Hence resolving along the tangent

dv dr
^^ = ""S'
.-. v'^ = c^ + a)V^

}

where r is the distance of the particle from

Also, resolving along the normal

v' , . ^ [R— = — 0)V sin © +
p ^ \m

- 2cov ,

J

where <^ is the angle r makes with the tangent. If j? be

the perpendicular drawn from on the tangent, we have

R v^— = — -}. ft)V + 2a)i;.m p -^
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If ft) be not constant, the equation for v cannot be inte-

grated, but the expression for R is

m dt

62. Prop. II. To determine the equations ofmotion of a
point with reference to polar co-ordinates^ the origin heing sup^

posed to move according to any given law.

Let Ox^ Oy be any two fixed axes, G the moving origin

and P the point. Let CR—r^ and let OR make an angle Q
with any fixed straight line Ox.

Since the relative motion only, of R with respect to G is

required, we may reduce G to rest by applying to both G
and R accelerations equal and opposite to the accelerations

of G. The particle R will then be acted on by the accelerating

forces given by the question and by the reversed accelerations

of the point G. Hence we shall have

d\ fd9\^
("impressed accelerating force on R along GR

-yy "" ^
(tt")

~
I
P^^^ reversed acceleration of G resolved along

Ox,

\ d f dd\ cinapressed accelerating force on R perpendi-

-^f^* -t:) =|cular to GR plus reversed acceleration of G
r at\ at J

(perpendicular to GR.

63. Prop. III. To determine the equations of motion of
a point in terms of its velocities parallel to two co-ordinate axes
which move according to any given law.

Let Oxy Oy be any two fixed axes ; ()f, Orj the moving
directions, and let as before the angle xO^ = 0. Let u, v, be
the velocities of the point parallel to the axes Of, Orj. Then

dx
j-^ucoaO — vsinO;

. d^'x (du dO\ n f dd dv\ . a
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Then by the same reasoning as in Art. 57, putting first ^ =

and then 6 = — — , we get the accelerations parallel to (9f, Orj.

Hence if X and Y be the impressed accelerating forces in

these directions, the equations of motion are

du do .^

dv d9 -, I

'

64. Prop. IV. To determine the equati(ms of rotation of
a hody about a point which moves according to any given law.

Let Ox, Oy be any fixed axes, and let the co-ordinates of

the moving point C be p, q.

Let X =p + f

)

Then the equation of motion is

= moment of the forces about 0.

Since the position of the fixed point is quite arbitrary,

we may take it so that the moving origin is passing through

it at the instant under consideration. At this instant we
have ^ = 0, ^^ = 0. Hence

= Lj the moment of the forces about (7.

Let f, T] be the co-ordinates of the centre of gravity re-

ferred to axes through C parallel to the axes Oxy Oy ; then

the above equation becomes

\,m (fJ-'f)=^-(g-'-Si)-^-(->'
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65. There is another demonstration which can be given

of this proposition which will enable us to remember the

result.

Since only the relative motion of the body and the point

C is required, we may reduce C to rest by applying to

every element of the body an acceleration equal and opposite

to that of (7. Let now r be the distance of any particle of

the body from C, -j- its angular velocity round C. Then the

accelerations of the particle will be

iy - li^ d i — 1^ '^
df '^\dt)

^^
r dt\ dt]

along and perpendicular to r. Then reversing these and
taking moments about G, we have by D'Alembert's Principle,

[moment of the impressed forces plus the

[moment of the added forces.dt\ dt)~

If every particle w of a body be acted on by the same
force/always acting parallel to a fixed direction, it is evident

that the sum of the moments of all these forces about any
point is equal to the moment of f%m supposed to act at the

centre of gravity. This is true whatever f may be and is

still true if for / we read the reversed acceleration of (7.

Hence we have

{moment round C of the impressed forces

plus the moment round G of the reversed

effective force of G supposed to act at the

centre of gravity {B),

By a well-known transformation we have

^dt] d^_ ^dd

^Tt~'^~dt~'' di'

,^, . ^d^r) d'i d ( ^dd\
andtheretore f-5^-^^ = ^(-^^j

;

hence the two equations [A) and {B) are exactly the same.

I
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66. If tlie point C be fixed in the body and move witb it

in space, -^ will be the same for every element of the body,

and r will be constant throughout the motion ; hence

dtV dt
-^"" W

k

where « is the angular velocity of the body, and is the
angle made by a fixed line in the body with a fixed line in

space.

67. From the general equation of moments about a
moving point we learn that we may use the equation

dco _ moment of forces about G
dt moment of inertia about G

in the following cases.

First, If the point G be fixed both in the body and in

space ; for then the acceleration of G is nothing.

Secondly. If the point G being fixed in the body move
in space with uniform velocity ; for the same reason as before.

Thirdly. If the point G be the centre of gravity ; for in

that case f= 0, ^ = 0.

Fourthly. If the point G be the instantaneous centre of

rotation*, and the motion be a small oscillation. At the

time i the body is turning about (7, and the velocity of G is

therefore zero. At the time t + dt, the body is turning about

some point G' very near to G. Let GG' = da, then the

* If a body be in motion in one plane it is known that the actual displace-

ment of every particle in the time dt is the same as if the body had been turned

through some angle oidt about some fixed point C. This may be proved in the

same way as the corresponding proposition in Three Dimensions is proved in

the next Section. See Prop. I. The point C is called the instantaneous centre

of rotation, and w is called the instantaneous angular velocity. See also

Salmon's Higher Plane Curves, T852, Arts. 246 and 264.

R.D. 6
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velocity of C is (oda. Hence in the time dt the velocity of

C has increased from zero to coda; therefore its acceleration

ig ^^ , To obtain the accurate equation of moments about
at J—

C we must apply the effective force Xm . © -^ in the reversed

direction at the centre of gravity. But in small oscillations

0) and -y- are both small quantities whose squares and pro-
(tt

ducts are to be neglected. Hence the moment of this force

must be neglected, and the equation of motion will be the

same as if G had been a fixed point.

It is to be observed that we may take moments about any
point very near to the instantaneous centre of rotation, but

it will usually be most convenient to take moments about

the centre in its disturbed position. If there be any unknown
reactions at the centre of rotation, their moments will then

be zero.

If the accurate equation of moments about the instan-

taneous centre be required, the value of co -7- must be found

from the peculiar circumstances of the problem under con-

sideration. For example, if a body roll on a curve, then the

arc da is described by G when the body has turned through

an angle 1- -r where p, p are the radii of curvature of the

body and curve at the point of contact, the curvatures being
supposed to be in opposite directions. Hence, since codt is

the angle turned through by the body in the time dt,

68. If there be several bodies forming together a dynamic
system, since the equation {B) is true for each of them
separately, it will also be true when they are all taken
together. In this case we cannot usually find a point G fixed
with respect to all of them, and we shall therefore require
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tlie following proposition to enable us to write down at once

the value of

69. Prop. V. The sum of the moments of all the effective

forces of any rigid hody about a point C is equal to the sum of
their moments about the centre ofgravity plus the moment about

C of the effective force of the centre of gravity. This propo-

sition expressed in Algebraic language is

\,m.

dt K dtj -^^ • dt ^^-dt V dt) '

where (o is the angular velocity of the body, r, 6, the co-ordi-

nates of the centre of gravity referred to G as origin and any
fixed direction through G as initial line.

^. ^dO dy dx
Since r M^^ft^Vdt

once from Art. 5.

dt
the proposition follows at

70. Ex. A sphere has a spherical eccentric cavity filled

with water and rolls on a perfectly rough horizontal plane.

To find the motion.

Let M and m be the masses of the sphere and water,

a and h the radii of the two spherical surfaces, G and A their

two centres. Let GA = c.

6—2
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Let X — ON be tlie abscissa of G and let 6 = tbe angle
NCA tlirougb wbich the sphere has turned.

First Let the sphere and water be of the same density.

Then (7 is the common centre of gravity of the whole system,
and we may take moments about it as about a fixed point.

Since the sides of the spherical cavity are supposed to be
smooth, the water supposed to be originally at rest will have
no rotation, hence the quantity represented by « in Art. 69
is here nothing.

The equations are therefore

^^^?+-=S=^'' «.

(Jf+«^)g =-^ (2),

and the geometrical equation is

dx do= a
dt dt (3),

where Ml^={M-\-m) | a'- m U + - h^ .

Solving these equations by the first method, we have F=
^^^

'df^^' ^^^^® *^® sphere moves with uniform velocity.

Secondly. Let the sphere and water be of different
densities. Let G, which lies in GA, be the common centre
of gravity, and let GG^^h. Then by Prop. iv. taking
moments about G, we have

~{M+m)g7i sine,
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also

and the geometrical equation is

dx _ dO

Eliminating F and x from these equations, we get

{Mk^ -^mc^ ^ {^M^m)d' -VL {M -^m) aJtco^e] ^^
du

+2 [M+ m) aA sin ^ .
0)'' = - 2 {M-^ m) gh sin 6, where ^ = w.

Integrating both sides, we have

f
j,j-

+a''-2aA<iOs^j«^= G -\- 2 [M + m)gh 0,0^ 6.

This equation gives the velocity of the sphere.

In this investigation it has been supposed that there has
been no jumping. When the fluid has the same density as

the sphere the common centre of gravity has no vertical

motion, and the pressure on the table being = [M -\-m)g^ is

always positive, and thus there can be no jumping. But
when the centre of gravity is not in the centre of the
sphere then

^ = a — A cos ^,

d'y _ E
df~M+m ^'

whence E can be found in terms of 0, If the motion be very

slow it is evident from the second equation that E cannot be
negative ; there will then be no jumping.

If J? vanish and become negative, the sphere will leave

the table and the centre of gravity will describe a parabola.
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Sect. III. Small Oscillations and Initial Motions.

71. If a body be placed in a position of stable equili-

brium and be then slightly disturbed it will make small

oscillations about that position of rest. Suppose the dis-

turbance originally given to the body to decrease without

limit, then the consequent motion will also decrease without

limit. But it will be found that the time of oscillation has in

general a finite limit. This finite limit when it exists is

called the time of a small oscillation. The smaller the

motions, the more nearly does the time of oscillation become
equal to this limit. When the motion is sufficiently small

we may take this as the true time of oscillation.

Since the motion is supposed ultimately to vanish, it is

obvious that we may neglect all squares and products of

small quantities. Thus the equations will be greatly sim-

plified. If we wish to preserve the linearity of our equations

we must treat the equations in a difierent manner from that

described in the previous section. For the chief method
there described consists in multiplying both sides of the

equations by quantities which in this case are very small, and
we should then be obliged to consider terms of the second

order. This is not usually found convenient in practice.

72. "When the system admits of only one independent
motion our object in general is to reduce the equations to

the form
d's^ +^= a.

This is effected by neglecting the squares of the small
quantity s. The solution of this equation is known to be

5 = - + ^ cos (V?r. t + B),
n ^

where A and B are two arbitrary constants. The physical

interpretation of this equation has been determined in trea-

tises on Djmamics of a Particle. It is proved that it repre-

sents an oscillatory motion, that the period of a complete

27r
oscillation is -7=, and that the central point is at a dis-

Jn
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tance from the origin equal to - . The extent of the oscilla-

tion is equal to A and depends on the initial conditions of

the motion. But in this case the motion is supposed ulti-

mately to vanish. Thus it appears that we may determine

all we require directly from the differential equation and

without considering the initial conditions of motion.

If n be negative the solution of the equation

is s = -^ + Ae"^' + Be-"^'

.

— n

The motion will not be oscillatory since s will continually

increase or decrease with t. If n be zero, we shall have to

consider the terms of the second order in the differential

equation.

73. First Method. When the system consists of a single

body there is a very simple method of finding the motion,
that is sometimes applicable.

Find the instantaneous centre. This can be always effected

when the directions of motion of two points are known. For
if we draw from these points perpendiculars to their direc-

tions of motion, these perpendiculars will meet in the instan-

taneous centre of rotation.

It has been shewn in the preceding section that If we
neglect the squares of small quantities we may take moments
about the Instantaneous centre as a ^xed centre. Now as the

unknown reactions will usually act at this point, their

moments will be zero, and thus we shall in general have an
equation containing only known quantities.

74. Ex. 1. A hemisphere performs small oscillations on

a perfectly rough horizontalplane : find the motion.

Let C be the centre, G the centre of gravity of the

hemisphere, N the point of contact with the rough plane.

.
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Let the radius = a, CG = c, O^^aNCG.

Here the point N is the centre of instantaneous rotation,

"because the plane being perfectly rough, sufficient friction will

be called into play to keep JV^at rest.

Hence taking moments about N

Since we can put GN=a — c in the small terms,

reduces to

Therefore the time of a small oscillation is

27ry
^9

It is clear that k^+c^= (rad.)^ of gyration about G
2 , , 3= - a and c=--a,bo J

If the plane had been smooth, M would 'have been the

instantaneous axis, GM being the perpendicular on CN. For
the motion of iV is in a horizontal direction because the

sphere remains in contact with the plane, and the motion
of G is vertical by Art. 33. Hence the two perpendi-

culars GM, NM meet in the instantaneous axis. By rea-

soning_similar to the above the time will be found to be

V eg
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75. Ex. 2. A cylindrical surface of any form rests m
stable equilibrium on another perfectly rough cylindrical sur-

face, the axes of the cylinders being parallel. A small dis~

turbance being given to the upper surface, to find the time of a
small oscillation.

Let BAP and haP be sections of the cylinders perpendi-

cular to their axes. Let OA, Ga be those normals to the two
cylinders which before disturbance were vertical. Let OPC
be the common normal at the time t. Through P draw a

vertical line cutting a (7 in if, and let G be the centre of

gravity of the body. Then unless G be on the left-hand

side of if, the body will be in unstable equilibrium, and there

can be no oscillation.

Now we have only to determine the time of oscillation

when the motion decreases without limit. Hence the arc aP
will be ultimately zero, and therefore G and may be taken

as the centres of curvature of aP and AP. Let r= OA,
r = Ga, c = aM, and let be the angle which Ga makes with

the vertical

;

... (9 = ^ GDE= z POA + zPGa
Sire PA arc Pa t- ^ •,=

1
;
— ultimately;
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also 6=s aMP= ultimately.

But since one body rolls on the other,

the arc Pa = arc FA
;

therefore equating the two values of 6,

err
this equation determines c; also let aG=c and 6^Jf which is

equal to c — c' = c".

Taking moments ahout P, we have

which reduces to

{/.^ + PG^}g = -c'>

^ +JJL 0-0-

therefore the time of oscillation is 27r
, " 9^

76. Second Method, Let the general Equations of mo-
tion of all the bodies be formed. Then if the positions about

which the oscillations take place be known some of the

quantities involved will be small. The squares and higher

powers of these may be neglected, and then all the equations

will become linear. If the unknown reactions be then elimi-

nated, the resulting equations may easily be solved.

If the positions about which the oscillations take place be
unknown it is not necessary to solve the Statical Problem,

first. We may by one process determine the positions of

rest, ascertain whether they are stable or not, and find the

time of oscillation. The method of proceeding will be best li

explained by an example. I

77. Ex. The ends of a uniform heavy rod AB of
length 2l are constrained to move, the one along a horizontal

line Oxj the other along a vertical line Oy, If the whole
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system turn round Oy with a uniform angular velocity &>, it is

required to find the positions of equilibrium and the time of
a small oscillation.

Let X, y Ibe the co-ordinates of G tlie middle point of the

rod, 6 the angle OAB the rod makes with Ox, Let i?, B!
be the reactions at A and B,

The effect of the rotation is the same as if the rod were at

rest and each element dr of the rod were acted on bj a force

ft)^ (a? + r cos 6) dr tending from (9y, the distance r being mea-
sured from G towards A, All these forces are equivalent to a

single force acting at G
+i

a)*^ (cc + r cos 0) dr = g)^. a? . 2?,
/:

and a couple round G *

= 1 o)^ (a? + r cos &) r sin 6 dr = (o^,2l , — , sin 6 cos 0,

* If a body in one plane be turning about an axis in its own plane with an
angular velocity w, a general expression can be found for the resultants of the
centrifugal forces on all the elements of the body. Take the centre of gravity

G as origin and the axis of y parallel to the fixed axis. Let c be the distance
of from the axis of rotation. Then aU the centrifugal forces are equivalent
to a single resultant force at

(?=/w2(c+a;) dm
= <j}^.Mc, since ic= 0,

and to a single resultant couple

=f(a^ {c+x) ydm,
= c^/xydm since y= 0,

= w^. Product of inertia about Gx, Gjf,
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Then we have the dynamical equations

dV

21 ,lc\^=^ Rx-R'y - <o\2lX^me co^e
dv o

(1).

and the geometrical equations

x = l cos^)

y=l&md)

Eliminating R, R\ from the equations (1), we get

d'y

(2).

^^.-y^+T^'^i=9^--''^y-<-'l^^^^^o.e,.,{^

To find the position of rest.

We observe that if the rod were placed in that position it

would always remain there, and that therefore

de ' dt ' df

4
I

This gives

gx — (o^xy — (o^- sin ^ cos ^ =
o

(4).

IT
Joining this with equations (2), we get ^ = -, or

sin d=—^j , and thus the positions of equilibrium are found.

Let any one of these positions be represented by

^ = a, a; = a, y = h.

To find the motion of oscillation.

Let a; = a + a;', y^h^-y\ ^ = a + 6', where x\ y\ &
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are all small quantities, then we must substitute these values

in equation (3). On the left-hand side since -j^, -~
, -^ ,

are all small, we have simply to write a, h, a, for x, y, 6. On
the right-hand side the substitution should be made by
Taylor's 'Theorem, thus

/(„ + ,', 5+y,„ + ,.) = |,' +|y +
J,..

We know that the first term /(a, h, a) will be equal to

nothing, because this was the very equation (4) from which
a, by a were found. We therefore get

dW d^x d^& r
a-^-'b-^-¥Tc^-^-={g-<o%)x-co''ay-(o^~Q,o^2(i.e\

But by putting 6 = a + 6' in equations (2), we get by
Taylor's Theorem

ic' = — Z sin a . 0', y' = lcosa. &.

Hence the equation to determine the motion is

(Z'^ + >^')^ + (^^ sin a +
I

©^'^ cos 2a) & = 0.

4 .

Now, if gl sin a + - w^Z'^ cos 2a=w be positive when either
o

of the two values of a is substituted, that position of equili-

brium is stable^ and the time of a small oscillation is

.. .1?
27r

/FT"

I

If n be negative the equilibrium is unstable, and there can

be no oscillation.

If 71 = 0, the body is in a position of neutral equilibrium,

and we must calculate both sides of the equation as far as

terms of the second order.

By a well-known transformation we have

d'y
"" df

d^._ d /,2 de\

y de ~dt\ dtl'
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Hence the left-hand side of equation (3) becomes

The right-hand side becomes by Taylor's Theorem

-^ [gl sm a -h - (oH"" cos 2aj — .

Hence the equation of motion true to the second order is

Jiff /3'2

g
where C = gl cos a — -coi^P sin 2a.

The equilibrium is unstable for a displacement in one direc-

tion and stable for a displacement in the opposite direction.

Let C be positive and let a be the initial value of 6', then the

time T of reaching the position of equilibrium is

W c Lvo?::^*
put ff = a^, then

hence the time of reaching the position of rest varies inversely

as the square root of the arc. Hence when the arc becomes
ultimately zero, the time becomes infinite.

78. This problem might have been easily solved by the

first method. For if the two perpendiculars to Ox, Oy at

A and B meet in N, N is the instantaneous axis. Taking
moments about N, we have the equation

{I' + ^') ^ = 9^ cos (9

-J
w^ {I+ ry sin 6 cos 6

21 i
=gl cos 6—— . sin 6 cos
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Then the positions of equilibrium can be found from the

equation

_/(a)=0,

and the time of oscillation from the equation

79. Third Method. When there are several bodies which
may move independently of each other the number of equa-

tions and unknown reactions may be very great. In the second

method we begin our process by eliminating from the equations

all the unknown reactions, and no further use is made of the

Dynamical Equations. We shall now explain a method of

obtaining at once the result of this elimination, which will

not require us to write down the primitive Dynamical Equa-
tions.

If we reverse the effective forces, by D'Alembert's Prin-

ciple they will be in equilibrium with the impressed forces.

Now applying the Principle of Virtual Velocities, we have by
Todhunter's Statics, Art. 254,

<m i^^+Jpy) = tm{XZx+Yhy),

where hx hy are any small arbitrary displacements consistent

with the geometrical relations, and X, Y are the resolved

parts of the impressed forces, omitting all the reactions.

By referring to Art. 259 of Todhunter's Statics, it will be
seen that this equation subdivides into as many equations as

there are independent motions in the system. These with

the geometrical equations will be sufficient to determine the

motion. Suppose for example the system admit of only one
independent motion, then ic, y, &c. may be expressed in terms

of some one variable, say Q, Let

then after substitution, E6 will divide out of the equation, and
we shall have a Dynamical Equation free from all the un-
known reactions.

80. If any of the bodies be a rigid body, the 2 on the
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left-hand side becomes an integral, and the following pro-

position will be necessary.

Let x, y, be the co-ordinates of the centre of gravity;

(^ the angle any straight line makes with the axis of XjM the

mass of the body. Then

or the virtual moment of all the effective forces is equal to the

virtual Tnoment of the whole mass collected at its centre of
gravity, plus the virtual moment due to rotation round the

centre of gravity.

This may be proved as follows : Let x = x + x\ and
y — y+y'' Then, by Art. 5, the expression on the left-hand

side becomes —

Putting a;' = 7- cos ^, y' = 7* sin ^, where r is independent
of t, we get

-^ =-.smc^^-.cos<^(^

^= +rcos^^-.sm^y)

Multiplying these respectively by

Bx = — r sin (j) Scft
]

By' = + rco3<j)B(f)}
'

the last term of the above expression becomes

/• de ^ df
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81. Ex. 1. Let us take tlie problem discussed In the

second method.

The only impressed forces are 2lg acting at (r, and the

centrifugal force (ti^ [x-\-r cos 6) dr acting on each element dr
and tending from Oy, The virtual moment of the former is

2lg^y, The virtual moment of the latter is

= 0)^1 (Z + r) cos^Jr.3(Z + r) cos^

= - 2? . -|- . ft)^ cos ^ . sin ^ . a^.
o

Hence the dynamical equation is

^ 8x-\-^, 8y + Jc'^ Se =gSy-^ co' sine cosOSe.

The geometrical equations are

X = 1 cos ^, y = Z sin ^

;

.\ Bx = -lsm68e, By^UoseSd,

substituting, we get

— -^ Z sm ^ + --^ 6 cos ^ + A;^ -Y^ = ^Z cos ^ —— co sind cos^,

the very same equation which we obtained before.

The remainder of the solution is therefore the same as

before.

82. Ex. 2. Two rods AB, BC are connected hy a smooth
Mnge at B, and are suspended from a fixedpoint hy one extre-

mity A, To determine the small oscillations of the system.

Let AB, BC, make small angles 6, & with the vertical.

Let ic, y ; x, y\ be the co-ord. of their centres of gravity,

X being measured downwards from the point of suspension.

Let 2Z, 2Z' be the lengths of the rods, 2Zm, 2Z'm their masses,

h, k' their radii of gyration about their respective centres of
gravity.

E. D. 7
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The equation of motion is

The geometrical equations are

a; = Z cos ^, ^ = Z sin 6,

X = 2Z cos 6+1' cos &, y = 2Z sin Q -\-V sin &

.

We have first to substitute for hx^ hy, &c. in the equation

of motion. As that equation will be subsequently divided by
hd or h6\ it must be obtained in the first instance correct to

the second order. The terms on the left-hand side contain

-jT 1 -j^ » ^^' ^^^ "^^ ™^7 substitute for Bx, By, &c. their

approximate values obtained by taking only the terms of t7ie

first order ; but on the right-hand side we must substitute the

values of Bxj &c. correct to the second order.

From the geometrical equations, we have

Bx=^-WBd, By=m,

Bx = - 2W Bd - re' B9', By' =21 Be + I'Be';

on the left-hand side of the equation of motion, we may put

Bx = 0, Bx' = 0.

Hence, substituting, we get

\

df
'

df ' del \(-gie{l+2l')td

.(.^..-)™-
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But since Bd and BO' are independent, this gives

Substituting in these equations for y and y', the approxi-

mate values

we get

To solve these, assume

6 = A &m(nt-{- o),

O'^A'miint + OL),

substituting, we have

[{UV +r + l^)A + 2rA'} n' = g{l+ 21') A]

{2ir.A + {r + r) A'] n' =gl'A'

Eliminating, we have

• {(4?r + P + k') n'-g{l+ 21')} {{l" + Jc") n'-gl'} = 4ZZ'V,

A' _ '-2U'n'

A~ {r + k")n'-gr'

The first equation is a quadratic to determine n^; it is

easily seen that both its roots are positive. Let the four

values of 71 thus obtained be + n^^ and ± n^. Then the oscillation

is represented by the equation

e ^A^ sin {^jfi^t + aj + A^ sin (w,^ + aj,

& = A[ sin (w^ < + aJ + A^ sin (w, <+ aj

.

7—2
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The four arbitrary constants A., A„^ OL.y a.., are to be de-
rid (Hff

termined by the initial values oi 6, 6',-t , -j- . The nega-

tive values of n give only the same terms over again.

Thus the motion consists of two oscillations whose periods

are -j=. and -7= . These go on together and do not interfere

in any way with each other. If there had been three rods we
should have had three oscillations, and so on.

Initial Motions.

83. Pkop. a system of bodies being m equilibrium, one

of the supports suddenly gives way. It is required to find the

reactions on the other points of support.

Suppose first that the system consists only of a single

body, and let it receive any small displacement. Let a;, y be

the displacements of the centre of gravity along the axes, 6 the

angle turned through.

In the beginning of the motion, x, y, and 6, are very small,

and hence their squares and higher powers may be rejected.

The geometrical equations will therefore take the form

Ax+By+Ce^D,
where A, B, C,D are some constants.

The geometrical equations must be found from the dis-

placed position of the body, because we require to diiferentiate

them ; but this is not the case with the dynamical equations.

These we write down at the instant when the body begins
to move. Thus we have

d^x
-^j = function of reactions and known quantities,

d^
df'

^ de
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By differentiating the geometrical equations and substi-

tuting from the dynamical equations we obtain sufficient

equations to determine the initial values of the reactions.

If there be more than one body in the system, the process

is exactly similar.

84. Ex. A circular disc is hung up hy three equal

strings attached to three points at equal distances in its cir-

cumference^ and fastened to a peg vertically over the centre of
the disc. One of these strings is suddenly cut. To deter-

mine the initial tension of the other two.

Let be the peg, AB the circle seen by an eye situated

in its plane. Let QA be the string which is cut and C the

centre of the chord joining the other two strings. Let G be
the initial position of the centre of gravity.

Let 2a = the angle between two strings, I— the length of

each string, a = the radius of the disc. Let a?, y be the co-

ordinates of the displaced position of the centre of gravity

with reference to G^ and let 6 be the angle the displaced

position of the disc makes with AB,

Then the equations of motion are

d'xm
de

2 Tcos acos^

d ym~ = mg — 2Tcosa.sin^ >

de

'm¥ -Ts- = 2 Tcos a .c.sin /8

where p is the known angle OCG and c= GC,

:i),
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These are the equations of motion at the instant when the

system begins to move. The geometrical equations are to be

found from the displaced position.

The co-ordinates of G will be a? — c and y — c6. Let

OG=^h, Then since the length OC remains constant, we
]iave

{x^cy-Viy-cO+hy^^y + c'',

/. -2cx-\-2h[y- cd) = 0,

by rejecting the squares of all small quantities. Differen-

tiating we get

d^x ^d'y , d'd ^

Substituting from equations (1) we get

'2Tc cosa cos^—77i^J+ 2 Th cosa sin^ "" U ^ T'cos a sin /3 = 0,

which is an equation to determine T,

The tension T before the string was cut is given by the

equation

3 T' cos 7 = mgy

where 7 = -^ AOG, Thus the change of tension can be de-

termined.

85. It is not absolutely necessary to express the geome-
trical equations in a linear form previous to differentiation.

Supposing one of these equations to be

<^(a7,y...) = 0,

then, differentiating, we get

I
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Differentiating again and remembering that the initial values of

-T. , ^ &c. are zero, since the system starts from rest, we get
dt ' dt

,,, , d'^x , , , , d'^y

Substituting for -^ , -^ , &c. their values given by

the dynamical equations, we have one of the equations re-

quired to determine the unknown tensions and reactions.

Ex. A fine string attached to a fixed point A carries a
small ring of mass m, and passing over a small pulley B in

the same horizontal plane with the fixed point has a mass
m^ + m^ attached to the free extremity. The system heing in

equilihrium^ the ma^s m^ is removed. Shew that the strain on

the fixed point is instantly reduced hy -.
'^

\. — times

,

^ ^ {m^ + m^'+m^m
its former value.

Let jTj and T be the tensions of the string before and after

the change. Let x and y be the distances of m and m^ from

the horizontal line AB, and let 6 be the angle the part Bm
of the string makes with AB,

The equations of motion are

d'^xm -y^ = mg — 2 Tsin ^

m.
df
^m^^T

' initially (1).
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Also 2V(aj'+a')4-y=?,

where AB = 2a and I is the length of the string
;

^{a^ + a^) dt dt

X d^x ,
d'^y ^ . ... ,, /_v

•• " V(a?'+«') df ' de

Substituting, we get

2.sin^(9'-2-sin^) + (^--- )=0;

_, 2 sin ^ 4-

1

.'. T—mm.q- t-^-j^ .

^^
4771^ sm^ ^ + m

But since the system is at rest when we put wi^H- 'm^ for tWj,

2 sm ^ =
;Wj + Wg

This problem and its solution are due to Mr C. B. Clarke

of Queens' College.

EXAMPLES.

Sections I. and II.

1. A rod is capable of moving about one extremity upon
a smooth horizontal plane : an elastic string is attached to the

other extremity, and is made fast to the plane in such a
manner that wnen the string has its natural length, the rod

and string are in the same straight line ; if the rod be drawn
from the position in which the string has its natural length
into any other and then let go, the angular velocity acquired
in returning to its original position will be proportional to

the initial extension of the string ; Hooke's Law being sup-

posed to hold throughout the motion.

I
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2. A sphere rests on the top of a fixed sphere, and is

very slightly displaced; determine where it will leave the

fixed sphere, (1) when the surfaces are smooth, (2) when they

are perfectly rough.

Result. Let 6 be the angle the line joining the centres

of the two spheres makes with the vertical at the moment of

2
separation, then when the spheres are smooth, cos — -, when

o

rough, cos^=—

;

3. A cylinder with a hemispherical end moves on a hori-

zontal plane from a given position. Find in any position the

angular velocity of the body, the velocity of its centre of

gravity, and the pressure on the horizontal plane
;

(l) when
the plane is perfectly smooth, (2) when perfectly rough.

4. A heavy uniform sphere rolls on a rough plane and
is acted on by a fixed centre of force in the plane varying

inversely as the square of the distance ; if the sphere be pro-

jected along the plane from a given point in it, in a direction

opposite to that of the centre of force, find the roughness of

the plane at any point, supposing the whole of it to be

required.

5. A perfectly rough cylinder is placed on an inclined

plane, and an elastic band tight but unstretched and parallel

to the inclined plane has one extremity fixed, while the other

is attached to the cylinder exactly opposite to its line of

contact with the inclined plane. All external support being
removed motion ensues. Determine the velocity in any given
position, and how far the cylinder will descend.

6. Two equal heavy spheres one solid and the other

hollow, and the hollow filled with fluid, are revolving with
the same angular velocity about a horizontal axis and are

laid side by side on a rough horizontal plane, the coefficient

of friction for both being /x ; if the interior radius of the sphere

be one-half of the exterior, and the density of the fluid equal
to that of the solid, find the distance between them at any
time, supposing that they move in parallel lines.
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7. A smooth wire without inertia is bent into the form

of a helix which is capable of revolving about a vertical axis

coinciding with a generating line of the cylinder on which
it is traced. A small heavy ring slides down the helix,

starting from a point in which this vertical axis meets the

helix : prove that the angular velocity of the helix will be a

maximum when it has turned through an angle & given

by the equation

cos' ^ + tan' a + ^ sin 2^ = 0,

a being the inclination of the helix to the horizon.

8. Two equal uniform rods of length 2a, loosely jointed

at one extremity, are placed symmetrically upon a fixed

smooth sphere of radius —r- , and raised into a horizontal

position so that the hinge is in contact with the sphere. If I
they be allowed to descend under the action of gravity, show
that, when they are first at rest, they are inclined at an

angle cos"^ - to the horizon, that the points of contact with

the sphere are the centres of oscillation of the rods relatively

to the hinge, that the pressure on the sphere at each point of

contact equals one-fourth the weight of either rod, and that

there is no strain on the hinge.

9. Two circular discs are on a smooth horizontal plane

;

one, whose radius is n times that of the other, is fixed, an
elastic string wraps round them so that those portions of it

not in contact with the discs are common interior tangents
the natural length of the string being the sum of the cir-

cumferences. The moveable disc is drawn from the other
till the tension of the string is T, prove that if it be now
let go, the velocity acquired when it comes in contact with
the fixed disc will be

yy.+ \) ira.X

m
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where m is the mass of the moving disc, X the modulus of

elasticity, a the radius of the moving disc.

10. Two masses m, m are connected by an inextensible

string, and laid over a double inclined plane of mass m + m,
which is capable of moving freely on a smooth horizontal

plane. If the section of the inclined plane be isosceles, and
a the inclination of its sides to the horizon, the system may
be kept in a state of relative equilibrium by the force

2 (m — m) g tan a

applied to the plane.

11. A body whose centre of gravity oscillates in a

straight line under the action of a force, which tends to a
fixed point, and varies as the distance, has an angular

velocity communicated to it about a principal axis through
its centre of gravity, which is perpendicular to the direc-

tion of motion ; show that the instantaneous axis traces out

in space an elliptic cylinder.

12. Two straight equal and uniform rods are connected

at their ends by two strings of equal length a, so as to forni

a parallelogram. One rod is supported at its centre by a

fixed axis about which it can turn freely, this axis being

perpendicular to the plane of motion which is vertical.

Show that the middle point of the lower rod will oscillate

in the same way as a simple pendulum of length a, and
that the angular motion of the rods is independent of this

oscillation.

13. Three equal and perfectly smooth balls are in con-

tact, each with the other two on a perfectly smooth plane,

and another of the same size rests upon them. Supposing
the motions of the balls to commence from these positions,

find the velocity of each after the upper ball has descended

through a given space.

14. A fine string is attached to two points A, B in the

same horizontal plane, and carries a weight W at its middle
point. A rod whose length is AB and weight Wy has a
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ring at either end, througli which the string passes, and

is let fall from the position AB, Show that the string must

be at least - ABj in order that the weight may ever reach
o

the rod.

Also if the system be in equilibrium, and the weight

be slightly and vertically displaced, determine the time of

its small oscillations.

15. Three equal particles A^ B, G repelling each other

with any forces, are tied together by three strings of unequal

length, so as to form a triangle. If the string joining B
and G be cut, prove that the instantaneous changes of

tension of the strings joining BA, GA are -Tcob.B and

- Tcos G respectively, where B and G are the angles op-

posite the strings joining GA^ AB respectively. ^
16. Three pieces of one uniform wire, rigidly connected

so as to form a triangle ABG, are in motion ; find the direc-

tions of the strains in the connections of the angles.

Result, The strain at A makes an angle

_i / sin 5 — sin G \

\\ +cos^ + cos Gj
with the side BG,

17. A fine thread is enclosed in a smooth circular tube

which rotates freely about a vertical diameter; prove that,

in the position of relative equilibrium, the inclination {6) to

the vertical, of the diameter through the centre of gravity

of the thread, will be given by the equation

cos 6
ao)^ cos ^

'

where co is the angular velocity of the tube, a its radius,

and 2a/3 the length of the thread. Explain the case in

which the value of a©* cos /3 lies between g and — g.
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18. A spherical hollow is made in a cube of glass, and a
particle is placed within. The cube is then set in motion on
a smooth horizontal plane so that the particle just gets round
the sphere, remaining in contact with it. Find the velocity

of projection.

19. A perfectly rough ball is placed within a hollow
cylindrical garden-roller at its lowest point, and the roller is

then drawn along a level walk with a uniform velocity F.

Show that the ball will roll quite round the interior of the

roller, if

a being the radius of the ball, and h of the roller.

20. A spherical shell (of radius a and mass m) rolls along
a rough horizontal plane, whilst a smooth particle P oscillates

within the shell in the vertical plane in which the centre of

the shell moves, the particle being never very far from the

lowest point. Show that the time of its oscillation will be
the same as that of a simple pendulum of length

ma (a* + Jc^)

{m + P) (a' + mJ^)
'

where 7c is the radius of gyration of the shell about a dia-

meter.

21. A sphere with a hollow spherical eccentric cavity

within it having a radius of the former for its diameter is

placed on a perfectly rough inclined plane, with the centre of

gravity at its shortest distance from the plane and left to

itself: find the angular velocity of the body when it has just

rolled once round, and the pressure on the plane.

22. A square formed of four similar uniform rods jointed

freely at their extremities is laid upon a smooth horizontal

table, one of its angular points being fixed : if angular velo-

cities ft), cd' in the plane of the table be communicated to the
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two sides containing this angle, show that the greatest value

of the angle (2a) between them is given by the equation

5 (q) - (o'Y
cos 2a = - - —J-

—

TT •

6 o) +©

Section III.

23. Two equal and parallel cylinders are rigidly con-

nected together by a straight rod. One cylinder makes small

oscillations by rolling on a perfectly rough plane, the other

cylinder being supported by the rod which passes through a

slit in the plane. The time of oscillation being the same
whichever cylinder is uppermost, prove that the length of the

simple equivalent pendulum is equal to the distance between

the cylinders.

24. A uniform rod of length 2c rests in stable equilibrium

with its lower end at the vertex of a cycloid whose plane is

vertical and axis downwards, and passes through a small

smooth fixed ring situated in the axis at a distance h from the

vertex. Show that if the equilibrium be slightly disturbed,

the rod will perform small oscillations with its lower end on
the arc of the cycloid in the time

^^^aJo^^Hi-cY

where 2a is the length of the axis of the cycloid.

25. Two rods are jointed at one end by a compass-joint,

and the other ends slide by rings on a vertical smooth circle

;

find the condition, and the time of oscillation.

26. A small smooth ring slides on a circular wire of

radius a which is constrained to revolve about a vertical axis

in its own plane, at a distance c from the centre of the ring,

with a uniform angular velocity \/ f .j ; show that the
c^2 + a

ring will be in a position of stable relative equilibrium when
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the radius of the circular wire passing througli it is inclined

at an angle 45*^ to the horizon ; and that if the ring be slightly-

displaced, it will perform a small oscillation in the time

faV2 cV2j-_aH

27. Two equal extensible strings, stretched in a hori-

zontal plane, have their ends fixed so as to touch at their

middle points a circular disc at the extremities of a diameter.

Supposing the strings to be nailed to the disc at these points,

find the time of a small oscillation, (1) when the circle is

turned through a small angle, the centre being unmoved,

(2) when the centre is displaced in the line perpendicular to

the strings.

Interpret your result supposing that in the position of

equilibrium the string is unstretched.

28. Two points ^, (7 of a circular ring, moveable in its

own plane about its centre, are connected with a fixed point

A by elastic strings, the natural length of each of which is

equal to the shortest distance (c) between A and the ring;

in the position of equilibrium AB, A C are tangents to the

ring; supposing the ring turned through any angle, calculate

the motion ; and show that the time of a small oscillation

/ 7)IC

is TT a/ —— , where m is the mass of the ring and \ the

modulus of elasticity of the strings.

29. A uniform bar suspended by two equal parallel

strings from two points in the same horizontal line, is turned

through a given angle about the vertical line through its

middle point: find the angular velocity of the bar in its

lowest position, and the time of a small oscillation when the

initial displacement is small.

30. The upper extremity of a uniform beam, of length

2a, is constrained to slide along a smooth horizontal rod with-

out inertia, and the lower along a smooth vertical rod,

through the upper extremity of which the horizontal rod
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passes : tlie system rotates freely about the vertical rod

:

prove that if a be the inclination of the beam to the vertical

when in a position of relative equilibrium, the angular velo-.

city of the system will be (-—-— ) : and if the beam be
•^ -^ \4:a cos a/

slightly displaced from this position, show that it will make
small oscillations in the time

Att

(— (seca-}-3cosa)j

31. Six stretched elastic strings of the same material

are attached to the angular points of a regular hexagon, the

length of each stretched string being equal to that of a side

of the hexagon, and they meet in a point to which a little

insect of given mass clings,—while it is slightly displaced

in the direction of one of the strings, having given the

modulus of elasticity, find the number of oscillations per

second, neglecting the attraction of gravity.

32. Four equal rods are connected by smooth joints at

their extremities, so as to form a rhombus : a constant force

mf is applied to each rod at its middle point, and perpen-
dicular to its length, each force tending outwards. If the
equilibrium of the system be slightly disturbed by pressing

two opposite comers towards each other, and the system be
then abandoned to the action of the forces, show that the
time of a small oscillation in the form of the system is

= 27r a/ —-; where m=the mass, and a = the length of each rod.

33.
^
A light uniform lamina in the form of a regular tra-

pezoid is suspended by one of the parallel edges, and a weight
Mg is uniformly distributed over the opposite edge ; supposing
the lamina to be elastic only in the direction of the breadth,
find the position of equilibrium and the time of a small vertical
oscillation.
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If 2a and 2h he, the lengths of the parallel edges, I the

breadth of the lamina when unstretched,

34. A sphere whose centre of gravity is not in its centre

is placed on a rough table ; the coefficient of friction being /i,,

determine whether it will begin to slide or to roll.

35. An equilateral triangle is suspended from a point by
three strings, each equal to one of the sides, attached to its

angular points, if one string be cut, show that the tensions of

the other two are diminished in the ratio of 36 : 43.

36. A horizontal rod of mass m and length 2a, hangs by
two parallel strings of length 2a attached to its ends: an
angular velocity co being suddenly communicated to it about

a vertical axis through its centre, show that the initial increase
2

of tension of either string equals —-— , and that the rod will

rise through a space -r— ,

37. A uniform solid, in the form of a paraboloid of revo-
lution, rests with its vertex on a smooth horizontal plane. It

is divided symmetrically by a vertical plane. Explain why
the pressure on the plane is instantly diminished; find the
change of pressure.

38. A circular ring is fixed in a vertical position upon a

smooth horizontal plane, and a small ring is placed on the

circle, and attached to the highest point by a string, which
subtends an angle a at the centre; prove that if the string

be cut and the circle left free, the pressures on the ring before

and after the string is cut are in the ratio M+msin^a : M",

m and M being the masses of the ring and circle.

39. Two uniform equal rods are placed in the form of

the letter X on a smooth horizontal plane, the upper and
lower extremities being connected by equal strings ; shew that

whichever string be cut, the tension of the other is the same
function of the inclination of the rods, and initially is Ig sin a,

where a is the initial inclination of the rods.

E. D. 8



CHAPTER y.

MOTION OF A RIGID BODY IN THREE DIMENSIONS.

Sect. I. The Geometry of the Motion ofa Rigid Body.

86. If tlie particles of a body be rigidly connected, then

whatever be the nature of the motion generated by the forces,

there must be some general relations between the motions of

the particles of the body. These must be such that if the

motion of three points not in the same straight line be

known, that of every other point may be deduced. It will

then in the first place be our object to consider the general

character of the motion of a rigid body apart from the forces

that produce it, and to reduce the determination of the motion
of every particle to as few independent quantities as possible

:

and in the second place we shall consider how when the forces

are given these independent quantities may be found.

87. Prop. I. One point of a moving rigid body heing

fixed, it is required to deduce the general relations between the

motions of the other points of the body.

Let be the fixed point and let it be taken as the centre

of a moveable sphere which we will suppose fixed in the body.
Let the radius vector to any point Q of the body cut the
sphere in P, then the motion of every point Q of the body
will be represented by that of P.

If the displacements of two points J., P, on the sphere in
the small time dt be given as AA\ BB\ then clearly the dis-

placement of any other point P on the sphere may be found
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"by constructing on A'B as base a triangle A'P'B' similar and
equal to APB. Then PP' will represent the displacement of

P. It may be assumed as evident, or it may be proved as in

Euclid, that on the same base and on the same side of it there

cannot be two triangles on the same sphere, which have their

sides terminated in one extremity of the base equal to one
another, and likewise those terminated in the other extre-

mity.

Let D and E be the middle points of the arcs AA', BB,
and let i>(7, EC be arcs of great circles drawn perpendicu-

lar to AA\ BB respectively. Then clearly CA = CA' and

CB— CB', and therefore since the bases AB, A'B are equal,

the two triangles A CB, A' CB' are equal and similar. Hence
the displacement of C is zero.

If we had taken any other points besidesA and B to start

with, we should still have obtained the same point C, For
let P be any other point on the sphere. Then since the trian-

gles APB, A'PB are equal and similar, and also the triangles

A CB, A' CB', the same formula that determines CP will de-

termine CP, hence CP=CP. Therefore if PP' be bisected in

E, ^(7 will be perpendicular to PB,

Also it is evident since the .displacements of and C are

zero, that the displacement of every point in the straight line

0(7 is also zero.

8—2
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Hence if a hody he in motion hi any manner about a fixed

pointy there is at every instant a straight line G such that the

displacement of every point in it in the time dt is zero^ and

there is only one such line.

88. It has been proved above if any point P be displaced

to P, that CP= CP. We shall now prove that the angle

PGP is the same wherever the point P is taken. For let

A and B be any two points on the sphere : then since GA
= GA' and GB= GB' and the base AB is equal to the base

A'B\ the triangles are equal and the angle AGB= the angle

A' GB. Eemoving the common part we have left the angle

AGA' = the angle BGB\ Let this constant angle be called

dd.

It follows therefore that the displacement of every particle

P may he represented hy turning the hody round OG as axis

through the angle dO.

89. Def. The ultimate ratio of this angle dO to the time

dt is called the angular velocity of the body about OG, and
the straight line 0(7 is called the instantaneous axis at the

time t.

The angular velocity may also be defined to be the angle

through which the body would turn in a unit of time if it

continued to turn throughout that unit with the same angular

velocity which it had at the proposed instant, and about the

same axis.

90. Prop. II. To explain what is meant hy a hody
having angular velocities ahout more than one axis at the same
time.

A body in motion is said to have an angular velocity to

about a straight line, when, the body being turned round this

straight line through an angle wdt, every point of the body is

brought from its position at the time t to its position at the

time t + dt.

Suppose that during three successive intervals each of

time dt, the body is turned successively round three difi*erent

straight lines OA, OB, OG meeting at a point through
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angles (n^dt^ (o^^dt, w^dt. Then we shall first prove that the

final position is the same in whatever order these rotations are

effected. Let P be any point in the body, and let its dis-

tances from OA, OB, OC, respectively be r^, r^, r^. First

let the body be turned round OA, then F receives a dis-

placement cOjT^dt. By this motion let r,^ be increased to

7*2 + dr^, then the displacement caused by the rotation about

OB will be in magnitude co^ {r^+ dr^) dt. But according to

the principles of the Differential Calculus we may in the limit

neglect the quantities of the second order, and the displace-

ment becomes (o^r^dt. So also the displacement due to the

remaining rotation will be (xi^\dt. And these three results

will be the same in whatever order the rotations take place.

In a similar manner we can prove that the directions of these

displacements will be independent of the order. The final

displacement is the diagonal of the parallelopiped described

on these three lines as sides, and is therefore independent of

the order of the rotations. Since then the three rotations

are quite independent, they may be said to take place simul-

taneously.

When a body is said to have angular velocities about

three different axes it is only meant that the motion may be
determined as follows. Divide the whole time into a number
of small intervals each equal to dt. During each of these

turn the body round the three axes successively through
angles (n^dt, ^^fi^^ (a^dt. Then when dt diminishes without

limit the motion during the whole time will be accurately

represented.

91. Prop. III. Given the angular velocities o)j, (o^, Wg

of a hody about three axes Ox, Oy, Oz at right angles, to deter-

mine the actual velocities of a particle whose co-ordinates are

X, y, z.

These angular velocities are supposed positive when they

tend the same way round the axes that positive couples tend

in Statics. Thus the positive directions of cOj, w^, co^ are

respectively from y to z, from z to x^ and from x to y.

Let us determine the velocity of P parallel to the axis of

z. Let PN be the ordinate z, and let PM be drawn per-
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pendicular to Ox. The velocity of P due to the rotation

about Ox is clearly ta^PM. Kesolving this along NP we get

(o^PM sin NPM= (o^y.

Similarly that due to the rotation about Oy is -w^x) and

I
that due to the rotation about Oz is 0. Hence the whole

velocity of P parallel to Oz is

dz

and the velocities parallel to the other axes

dx

3^ = "^^ .y*

dt
— COJX — (0,Z.

92. The quantities w^, w^, eug, are called the angular
velocities of the body about the axes of x, y, z respectively,

but they must be carefully distinguished from the angular
velocities of any particular particle of the body about the
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same axes. Let P be any particle of the body whose co-or-

dinates are x, y, z, and draw PL = r perpendicular to the axis

of z. Let 6 be the angle x ON, then the instantaneous angu-

lar velocity of P about Oz is -t- ,

_, ^ ^dO dy dx

= (D^r^ — xz .(o^— yz(o^

dx dy
by substituting for -7-

,
~

, their values just found

;

dO xz yz

Hence the angular velocity of a particle about Oz is the

same as that of the body when the particle lies in the plane

of xy or when it lies in the plane given by

93. Prop. IV. Given the angular velocities o) , w^, ©3,

of a body about three axes Ox, Oy, Oz, at right angles, to de-

termine the joosition of the instantaneous axis and the angular

velocity about it.

Since the velocity of every point in the instantaneous axis

is zero, its position may be at once found by equating to nothing

the expressions for -^ ,
-~

, -^ ,
given in Prop. III. Thus

we have
= (D^y-ay^x-]^^

= «2^ - ^^y > ,

= ojgOJ — (o^z J

and the equations to the instantaneous axis are therefore

X _ y _ z

CO, C0„ Ct)„

*
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Let (o "be the angular velocity about the instantaneous

axis, and a, /3, 7 the angles it makes with the axes of co-ordi-

nates. Let X, 7/, z be the co-ordinates of any point F in the

instantaneous axis, and let N be the foot of the ordinate z.

Let us consider the velocity of the point N. Its direction

of motion is clearly perpendicular to the plane PON, and
since the perpendicular distance of N from OF is ON cos 7,

the velocity of iV is o) . ON cos 7. Resolving this along Ox
"we have — wy cos 7. But by Prop. ill. the velocity parallel to

the axis of a? is — w^
;

.'. ft>3 = ft) cos 7.

By similar reasoning we can prove

ft)j = ft) cos a,

6)3 = ft) cos yS

;

adding the squares of these three equations we get

ft)^ = ft),^ + ft)/+ft)3^

94. Prop. Y. If two angular velocities about two axes
OA, OB, be represented in magnitude and direction by the two
lengths OA, OB; then the diagonal 00 of the parallelogram
constructed on OA, OB, as sides, will be the resultant axis

of rotation, and its length will represent the magnitude of
the resultant angular velocity. This Prop, is usually called
" The Parallelogram of Angular Velocities."

Let F be any point in 0(7, and let F3I, FN he drawn
perpendicular to OA, OB. Then the velocity of any point F
is perpendicular to the plane A OB, and is represented by

OA.FM-OB.FN
= OF.[OA. sin COA - OB. sin COB]

= 0.

Therefore the point P is at rest and 0(7 is the resultant
axis of rotation.
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Let o) be the angular velocitj about 0(7, then the velocity

of any point A in OA is perpendicular to the plane A OB
and equal to o) . OA . sin COA. But it is also equal to

OB. OA sinBOA;

^„ sin^O^
ft) = OB .

-.—WT^-rsm COA

= oa

Hence the angular velocity about OC is represented in

magnitude by C.

95. Prop. YI. Evert/ motion of a rigid hody may he

represented hy a combination of the two following motions.

First. A motion of translation whereby every particle is

moved parallel to the direction of motion of any assumed point

rigidly connected with the body, and with the same velocity.

Secondly. A motion of rotation of the whole body- about

some axis through this assumedpoint.

This may be proved as follows. It is evident that the

change of position of the body can be eiFected by first moving
any point from its old to its new position by a motion of

translation, and secondly, retaining this point fixed, by
moving any two points of the body not in one straight line
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with 0, into their new positions. This last motion has been"
proved in Prop. i. to be equivalent to rotation about a single

axis through 0. ^j

Let ft)j, a)^, ft)g, be the angular velocities of the body about
three rectangular axes meeting in any assumed point 0, u, v, w
the linear velocities of parallel to these axes. Then the

velocities of any point whose co-ordinates are a?, y, z, are

dy
-^ = ^ + «»3^ - ft>i^

dz

96. Since we may begin by assuming a great number of

different points as origin, the motion of a body from one posi-

tion to another may be represented in a great many different

ways. It remains to explain the connection that exists be-

tween these different representations. The analogy which
exists between forces and rotations will enable us to do this.

We have seen that forces and rotations have the same law of

composition and resolution, and therefore every proposition

concerning forces has its corresponding proposition in the
theory of rotations. But in order to make any use of these

results it will be necessary to determine the analogue of a
couple. The following proposition will show that it corre-

sponds to a motion of translation.

97. Prop. VII. A hody has coexistent angular velocities

CO and o)' about two parallel axes OA, O'A' distant h from each
other

J
to find the resulting tnotion.

Let OA be taken as the axis of a?, and the plane of

OA^ A'O' as plane of scy. Let P be any point whose co-
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ordinates are a?, y, z. By Prop. ill. the velocities of P
resolved parallel to the axes are respectively

dx „ dy , ,v dz
, t/ is

If these three quantities be made to vanish simultaneously,

we must have

The motion is therefore one of rotation about a single axis,

and the position of the axis is determined by the above

values of y and z. If li be the resultant angular velocity

about it, we have -j — — ^^i and

/. II = ft) + ftj'.

It appears therefore that the resultant axis of rotation

may be found by exactly the same process as that by which
we determine the resultant of two forces (o, co' acting along
OA, O'A!.

If ft) = — ft)' the resultant vanishes, but y becomes at the

same time infinite. The motion in this case is given by

dx ^ dy ^ dz ^

5F=^' i=''' dt=^'''

that is, the motion is one of translation parallel to the axis

of z,

98. We may deduce as a corollary to this proposition,

that a motion of rotation ft) about an axis OA is equivalent

to a motion of rotation ft) about a parallel axis O'A' plus

a motion of translation h(a perpendicular to the plane OA^
O'A' J and in the direction in which 0' moves.

99. It is proved in Statics that a system of forces is

generally equivalent to a single force and a single couple,

and that these may be reduced to a resultant B, acting along

a line called the central axis, and a couple G about that axis.
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Or they may also be reduced to a resultant B of the same
magnitude as before, acting along any line parallel to the

central axis at any chosen distance c from it, together with

a couple G' about an axis perpendicular to the line whose
length is c, and inclined to the resultant B at an angle 6.

Then we know that G' = J G" \- i^V, and is a minimum when
Re

c = 0, and also that tan 6 = j^ .

The same train of reasoning by which these results were
established, will establish the following proposition. The
general motion of a body having been reduced to a motion of

translation and one of rotation, these are equivalent to a
motion of rotation co about a line called the central axis, and
a translation along that axis. Or they may also be reduced
to a rotation co of the same magnitude w about any line

parallel to the central axis, and at any chosen distance c

from it, together with a translation V along a line per-
pendicular to the line c, and inclined to the axis of co at

an angle 6. Then we know that F' = V^^TcV'and is a

minimum when c = 0, and also that tan ^ = ^®-.

In a similar manner many other propositions may be
established.

I

100.
^
Prop. VIII. The Tnotion of a hody being reduced

to a motion of translation and rotation, it is required to find
the condition that the motion may he one of rotation only about
some axis, and to find that axis.

This evidently corresponds to the proposition in Statics,
" To find the condition that a system of forces may be re-
duced to a single resultant," and the required condition may
be inferred from the result there obtained.

But we may also reason thus. Let co^, w^, w^ be
the angular velocities about the three axes of co-ordinates

;

M, V, w the linear velocities of the origin. Then the veloci-
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ties of any point P on the single axis of rotation must vanish.

Hence

ax

dt
= M + w^z -^^'-=

dy

dt
= V + w^x — (O^Z ==

dz

dt
= w; + ^iV--(0^X ==

(1).

If the motion be one of rotation only, these are the

equations to that axis, and they must therefore be really

equivalent to only two. Multiplying these respectively by

««i,
a>2' ^3> we get

U(0^ + VCD^ + WOO^ = 0.

This is therefore a necessary condition, but it is not

sufficient, for it is evident that the equations (1) cannot be
satisfied if all the three quantities w^, w^, oo^ be zero.

Sect. II. The motion of a body ofgiven form under any

forces,

101. Prop. I. To determine the general equations of
motion of a body about a fixed point.

Let the fixed point be taken as origin, and let a?, y, z

be the co-ordinates at time t of any particle m referred to any
rectangular axes fixed in space. Let Xm, Ym, 2mi be the

impressed forces acting on this element, and let X, M, N be

the moments of all these forces about the axes of co-ordinates,

and let P, §, R be the pressures of the fixed point on the

body.

Then by D'Alembert's Principle, if the effective forces

d'^x d^y d'^z
m -jr^ , ^TT^ ' ^"7^ ^® applied to every particle m in a
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reversed direction, there will "be equilibrium between these

forces and the impressed forces. Taking moments therefore

about the axes, we have

Eesolving parallel to the axes, we have

-'"'
df

-=P+XmX

^Te--Q + :S,mY

= M + tmZ

To simplify these equations, let co^, cOy, co^ be the angular

velocities about the axes. Then

dx

dt~
(OyZ- ««y,

dy

dt~
(o,x — (O^Z,

dz
^rV- (a^x;

,
d^x da) dco

d^y d(Dg d(o^
,

I
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Substituting in the last of equations (I) we get

+ 'ZmXZ . WyO);, J

The other two equations may be treated in the same
manner.

The original equations (I) cannot be used because they

contain an infinite number of unknown accelerations. By
this transformation they have all been reduced to depend on

three unknown quantities, viz. co^, (o^, co^. But the equations

thus obtained are so complicated as to be practically useless.

To simplify them still further take axes OA, OB, OC, fixed

in the body, and coincident with the principal axes of the

body at the point 0, and let Wj, eo^, co^ be the angular velo-

cities about these axes.

Since the axes Ox, Oy, Oz are perfectly arbitrary, take

them so that the axes OA, OB, OC are passing through

them at the moment under consideration. Then co^ = co^,

cOy = co^, co^ = 6)3, and the last equation reduces to

102. We have now to find the relation between —

^

d(o . . .

^^

and —7-^*. Let A, B, C, be the points in which the prin-

cipal axes cut a sphere whose centre is at the fixed point.

Let OL be any other axis, and let O be the angular velocity

about it. Let the angles LOA, LOB, LOG hQ called re-

spectively a, y3, 7. Then

fl = ft)j cos a + 6)2 cos /3 + Wg cos 7

;

* This demonstration of the equality of —^ and ~ is due to Professor

SJesser, of Queen's College, Belfast.
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dt ~ ~dt

day dw„
cos a + -7rC0s/3 + -7rC0S7

dt dt

da ' a^^ . c?7

Now let the line OL be fixed in space and coincide with 00

IT IT
at the moment under consideration. Then a = —

, ^ = ^ >

7 = 0; therefore

dVl day^ doL

dt dt ^' dt

d^
''dt

da .

{
Also -7- is the rate at which A separates from a Jixed

dt

dl3
point at 0, which is clearly co^. Similarly -j- = — (o^. Hence

dt

dfi _ do)^

~dt~~dt

mi d(ii^ _ d(o^ dcDy _ d(o^ d(D^ _ dw^

~dt~dt' ~dt ~'dt ^ lit ~~di

The equation —j^ = —j^ may appear at first sight to be

a mere truism, but it is not so j 0)3 denotes the angular velo-
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city of the body about the axis C fixed in the hody, «, de-

notes the angular velocity about a line Oz fixed in space, and

determined by the condition that at the time t, OC coincides

with it. At the time t + Bt, 00 will have separated from Oz,

and we cannot therefore assert a priori that the angular velo-

city about will continue to be the same as that about Oz.

The above investigation proves that this is the case as far as

the first order of small quantities.

Substituting for -^^ the equation of motion becomes

tm {x' + f) ^f + tm {x' - f) «,«,=K

Let A, B, C be the moments of inertia of the body about

the principal axes at 0; then the three equations of motion
are

A^-{B^C)co,a>, = L^
dt

day,

'dt
B^-{0-A)co^co^=:3f

These are called Euler's Equations.

(III).

103. To determine the geometrical equations connecting

the motion of the hody in space with the angular velocities of
the hody about the three moving axes, OA, OB, 0.

Let the fixed point be taken as the centre of a sphere of

rad. unity ; let X, Y, Z, A, B, be the points in which the

sphere is cut by the fixed and moving axes respectively. Let
ZC, BA produced if necessary, meet in E. Let the angle

XZG='yJr, ZC—6, ECA=(j). It is required to determine
the geometrical relations between 6,

(f>,
'>^, and (o^, (o^, w^,

R.D. 9
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It is evident that the velocities of the point of the body
coinciding with C are

-J-
sin 6 perpendicular to ZG,

and -t: along ZC,

and the velocity along EA of the point of the body coinciding

with A is

-J-
sin ZE (due to variation of '^)

+ -?- sin GE (due to variation of <^),

or since GE = -
,

f-^-S
Now the velocities of the point of the body coinciding

with (7, are also

0).^ along GA,

a)j along BG,
{
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and the velocity along UA of the point coinciding with A
is e»3; hence resolving the latter set so as to make them
coincide with the former,

•— sin 6 = — Q)j^ cos <^ + (»2 si^ 4^
"1

dd
I^ = Wj sin (^ + Wg cos ^ y (IV).

dylr ^ deb
\-^COS0+^ = <., J

The dynamical equations (III) and the geometrical equa-
tions (IV) are sufficient for the determination of the whole
motion.

104. To determine the pressure on the fixedjpomt.

If X, y, i, be the co-ordinates of the centre of gravity, the

equations (II) reduce to the form

and two similar equations. It Is necessary to express -y^

the acceleration along a fixed straight line in terms of co^,

Q)y, 0),. This has been already done, and we have

^^^

r
"^~ ^ -^+«,(a),^-a)^i)-a),(a),^-a)^i)|=P+2(wX),

and two similar equations.

105. It appears from Euler's Equations that the whole

changes of w^, Wj, w^ are not due merely to the direct action

of the forces, but in part are due to the centrifugal force

of the particles tending to carry them away from the axis

about which they are revolving. For consider the equation

d(o, N A- B

Of the increase doa^ in the time dt, the part -^ dt Is due

to the direct action of the forces whose moment Is N, and the

9—2
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part —v^— (0^(0^ dt is due to the centrifugal force. Tliis

may be proved as follows.

If a hody he rotating about an axis 01 with an angular

velocity w, then the moment of the centrifugalforces of the whole

body about the axis Oz is [A — B) w^o)^*

Let P be the position of any particle m and let cc, y, z

be its co-ordinates. Let PL be a perpendicular on 01, let

OL — u, and PL = r. Then the centrifugal force of the par-

ticle m is Q)Vm tending from OL

The force wVw is evidently equivalent to the four forces

(ji)^xm, (li^ym, w^zm, and — dy^um acting at P parallel to x, y, z,

and u respectively.

The moment of (o^xm round O2 = — co^xym ]

(oym = (oxym

(o^zm =

these three therefore produce no effect.
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The force — v^um parallel to 01 is equivalent to the three,

— ft>ft)j W7Z, — ft)ft)2 ^^j ~~ ®^3 ^^^' acting at P parallel to the

axes, and their moment round Oz is evidently

(jdum {(o^y— ft>2^).

Now since the direction-cosines of 01 are —
,
—

^ , —%•
0) O) O)

therefore by projecting the broken line cc, y, z on 01, we
get

(o a) CO

therefore substituting for w, the moment of centrifugal forces

about Oz is

= {co^y - (o^x) {(o^x + co^y + co^z) m,

= 0)^^ xy + co^co^y^ + co^oy^yz — co^o)^ x^ — (o^xy — w^Wg xz . tw.

Writing S before every term, and supposing the axes

of 07, 3/, 2;, to be principal axes, then the moment of the

centrifugal forces about the principal axis Oz

106. The equations of Euler determine the motion with
reference to axes fixed in the body. The motions of these

axes being unknown, the moments about them must be found
without any limitation as to their position. Hence the quan-

tities X, if, iVwill generally be very complicated functions of

^, 0, -i/r. When Euler' s equations are joined to the geome-
trical equations (IV), the eliminations to be performed are

then so complicated as to be practically impossible. It be-

comes necessary therefore to inquire whether the two sets of

equations can be simplified by referring the motion to axes

moving in the body. This simplification can generally be
effected when either two or all three of the principal moments
of inertia at the fixed point are equal.



134 MOTION OF A EIGID BODY

107. Prop. II. To discuss the different forms which

Eulers general equations of motion assume lohen two of the

principal moments of inertia at the fixed point are equal to

each other.

Suppose A = B. Then instead of choosing fixed axes

Ox and Oi/, we may choose axes Of and Ot] which move in

any manner round the third axis OC which remains fixed

in the body.

Let X ^^ ^^^ angle the axis of f makes with x, and let

o)^, coyj be the angular velocities about the axes f, rj. Then

a)^ = ft)fCOS%-a),smx,

doo^ dcot

dt

^X ^Xsm %-ft)^sm
;,^ -^ - o), cos X -ifdt dt

Let the axis of x be taken so that the axis of f is passing-

through it at the moment under cons^ideration, then % = 0,

dw^

dt dt " dt

Similarly by putting ^= — - we get

dw,. d(ti^

dt dt̂
+^^

dt

The axes of Of, Or) have been supposed to be moving from
Ox to Oy, and that expression contains the negative sign

which treats of the axis of x,

Euler's equations now become

^dw^ dx
dt

dw.

dt
^ +

dt

(V).
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Two of the geometrical equations are tlie same as the

first two, given in IV, Since the axes are moving in the

body with an angular velocity -^ , in the third equation we

must put -~ —
-J^

for -^. Hence the three equati
dt dt

df
dt

dt

sin ^ = — ft)j cos (j> + (o^ sin cj)

d0

dt
= ci)j sin (j) 4 Wg cos ^

d-Jr ^ deb dy

ons are

(VI.)

108. There are two cases in which these equations

become much simpler.

First. Since -^ is perfectly arbitrary, let it be chosen

= — tWg. Then the above equations reduce to

at

The third geometrical equation takes the form

Secondly, Let -^ be so chosen that the axes Oz, 00,

and OA shall be in one plane, then <^ = 0, and the geome-
trical equations become
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-^- sin 6 = — co,

dt
'

-S-t-^
The dynamical equations are the same as (V).

If Z = andM be any function of 6 these equations admit

of complete solution, as shown in the following example.

109. PrOB. a hody, two of whose principal moments at

the centre of gravity are equal, moves about some fixed point

in the axis of unequal moment, under the action of gravity, ^
Determine the motion,

This is the problem of a top spinning on a perfectly rough
horizontal plane. In the investigation a top is sometimes
spoken of, for convenience of reference, but the process is

quite general.

Let the axis of Oz be vertical. Let the axis of unequal
moment at the centre of gravity be the axis C, and let this

be called the axis of the body. Let h be the distance of the

centre of gravity of the body from the fixed point 0, and let

the mass of the body be taken as unity. Then by the second

part of Art. 108, the equations of motion are

H

^t-

(1).
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de

d'>lr . ^
-^sm o = — co.

at *

Eliminating -^ and -~~ we get

137

(2).

A -j^+A cot 6(0^(0^ + CwgOg =

A -T^ —A cot dco^ — Cw^co^ = gh . sin 6

and Wg = w is a constant quantity.

(3),

7/1

Putting ©2 = -^, the first of these equations becomes

w,

A
I -^ sm 6 + cosd-r (o^j + Cn sin 6 -^ — 0,

Integrating we get

AcOj^ sin 6 — Cn cos ^ = a

where a is an arbitrary constant.

Multiplying the first of equations (3) by (o^ and the second

by Wg, and adding, we get

. / dco.
,

d(o^ 1 • n^O

(5),

where ^ is another arbitrary constant. These two equations

(4) and (5) might also have been deduced from the principles

of Conservation of Areas and Vis Viva.
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It is evident that having now found co^ in terms of 6, we
can find 6 in terms of t by means of equation (2). The inte-

gration will be found to be of the form

j'<f^

dcosd

+ /3 cos ^ + 7 cos''^ + 8 cos^^

Also -^ the rate at which the top goes round the vertical

can be found from the equation

d-yjr ^1 _ a+ Cn cos 6

showing that when the body is nearest the vertical, it goes

round the vertical with the greatest angular velocity.

The equation to determine the motion of the axis of the

body is

(a+ Cn cos ey (^__ 13 -2gh COB d .

A'sin'O '^[dt)~ A ^^^'

From this equation we see that 6 can never vanish unless

a = — Cn, for the left-hand side of the above equation would
then become infinite. Hence the axis of the body cannot, in

general, become vertical. Suppose the body to be set in

motion in any way with its axis at an inclination t to the ver-

tical. The axis will begin to approach or to fall away from

the vertical according as the initial value of -^ or co^ is nega-

dd
tive or positive. This motion will continue until -y- vanishes:

it is evident from the equation that the axis will then begin to

return, and will oscillate between two limiting angles. To find

these limits we have the equation

{0L+ Cn cos ey - A {1 - cos' d) {13 -2g7i cos 6) =0... .{7),

This is a cubic equation to determine cos 6. It will be
necessary to examine its roots. When cos ^ = — 1, the left-

I
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hand side is positive; when cos 6 = cos /, since the initial value

of ( -7- ) is essentially positive, the left-hand side is either zero
dt)

or negative: hence the equation has one real root between
cos ^ = — 1 and cos B = cos ^. Again, the left-hand side is posi-

tive when cos ^ = + 1 , and is negative when cos 6—co. Hence
there is another real root between cos 6 = cos i and cos ^ = 1,

and a third root greater than unity. This last root is inad-

missible.

If the initial values of w^, (o^ are zero, we have by (4)

and (5) a = — Gn cos ^, /3 = 2gh cos i. Hence the equation

becomes

(cos i — cos Of = -—^-^ . (1 — cos^^) (cos i- cos 6).

(72^2
Putting . = 2p, the roots of this equation are

cos 6 = cos i 1
I /g^

cos 6 —jp — Vl — 2pcosz+^^ J

The value cos ^=j9 + Vl — 2p cos i-\-p^ is always greater

than unity, for it is clearly decreased by putting unity for cos ^',

and its value is then ^ + 1 —p — 1. The body will therefore

oscillate between the values of Q given by the equations (8).

If a top be set spinning on a perfectly smooth horizontal

plane, its motion may be determined in the same way. The
equations (2) and the left-hand sides of the equations (I) will

be the same as before, and the whole process will be very
similar.

110. If a top be spun on the ground it is seen to raise

itself up into a vertical position, and to remain so for some little

time. But equation (5) shows that h cos 6, the height of the

centre of gravity, can never exceed a certain quantity. If the

initial values of w^w^ are small, this quantitymaybe considerably

less than A, and in this case the top can never become nearly

vertical. If the ground were smooth, an equation similar

to (5) can be easily proved to exist, and the same conclusion
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will follow. But the case of a real top differs from the

problem we have been considering in two particulars. The
apex is not a mathematical point, and the friction is not

enerally sufficient to prevent sliding. The apex of the top

oth rolls and slides on the ground.

111. Prop. III. To determine in what cases we can take

moTtients about the instantaneous axis as if it were a fixed
axis.

Following the usual notation the equations of motion are

. d(o.

dt
{B^G)co,co, = L

B^-{C-A)co^<o^=^M

dt
{A-B)(o^to^ =N

^

Let ?, m, n be the direction cosines of the instantaneous

axis, / and £1 the moment of inertia and angular velocity

about it ; then w^ = ZH, ©^ = ^^j ^3 = ^^* Substituting in

the above equations, we get

Av'i-iB-G) a^= iL -Ai^a
dt

Bm'^-{C-- A) lmna'=mM-Bm^ a
dt ^

'

dt

Cri
dt
-{A-B)lmnD}=nN- a

adding these,

dn

dt

I

where P is the moment of all the forces about the instan-

taneous axis. Hence the equation
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will hold whenever

This is satisfied in the three following cases

:

First, When Z, w, w, are constants.

Secondly, When A = B and n is constant, i. e. when the

instantaneous axis always makes the same angle with the

axis of unequal moment of inertia.

Thirdly, When A—B=G\ as for example, if the body
be a cube or a sphere, and the fixed point be the centre of

gravity.

112. Ex. A right cone is placed with its slant side on
a perfectly rough inclined plane, and rolls on it under the action

ofgravity. It is required to find the motion.

Let G be the axis of unequal moment of inertia, then
since the cone rolls, the instantaneous axis makes a constant

angle with the axis C. Hence we can take moments about
the instantaneous axis.

Let the fixed vertex of the cone be the origin, and let
<f>

be the angle the side of the cone in contact with the plane
makes with the direction in which gravity acts when resolved

along the plane. Let 2a be the angle, h the height of the

cone, P the inclination of the plane to the horizon. Then

/ -,7 = — Mg sin /8 . - ^ sin cc. sin
<f),

also n sin a = -? . cos a

;

dt

d^6 3 Mqh sin'' a sin yS . ,

dt 4 /cos a ^

This equation can be easily integrated and the whole
motion found. If the cone just make complete revolutions,
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the angular velocity at the lowest point will be given by the

equation

-.2 _ 20^ sin 13 cos a
~"

h ' sin'^ a + 6 cos^ a
'

In the same way we may find the motion of a cone rolling

under the action of any forces on another perfectly rough
cone ; or, its vertex being fixed, rolling on any rough curve.

These motions may also be found by means of the principle

of vis viva.

113. Prop. IV. To discuss the different forms which
Eulers general equations of motion assume when the three prin-

cvpal moments of inertia at the fixed point are equal to each

other.

There are three sets of axes such that when the motion is

referred to them, the equations take a simple form.

First. We may choose axes fixed in space. For since

every axis is a principal axis in the body the general equa-

tions in Art. 101 take the simple form

dda^ _ L

dt J ^'

dco^^N
dt ~ A,

and the geometrical equations (IV) are no longer wanted.

Secondly, We may choose one axis as that of C fixed in

space, and make the other two moveround it in any manner,
as shown in Art. 107. The equations of motion then become

day^ d')(^ __L

~dt~'^''dt"A

d(o^ dy M

dtOt^N
~di'~AJ
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Thirdly, We can take as axes auy three straight lines

at right angles moving in space in any proposed manner.
To effect this the two following propositions will be neces-

sary.

114. Peop. a. To determine the equations of motion of
a particle with reference to axes moving in any manner about

a fixed origin.

Let the moving axes be Ox^ Oy, Oz, and let their mo-
tion be given by the angular velocities 6^, 6^, 6^, about the

axes Oxj Oy, Oz, respectively. Let OL be any line fixed in

space making with Ox, Oy, Oz, the angles a, ^, 7. Let w,

V, w be the velocities of any point P along the axes, and let

Fbe the velocity resolved along OL. Then

F= u cos a + v cos ^ + w cos 7

;

dV du dv r, ^^

da. ' r^dfi . 6^7— w sm a -^^— -y sm 0-77 — 2(7 sm 7-^7

.

dt dt dt

dV .

Now because OL is fixed in space, -rr is the accelerating

effect of the force along OL.

Let X, Y, Z be the accelerating effects of the impressed
forces along the axes. Then taking OL, so that the axis

of z is passing through it at the moment under considera-

tion, we have a = —
,

/S = —
, 7 = 0,

^_ ^__ d(L c?/9

dt dt dt"

But -J- is the rate at which OA separates firom a fixed

axis OL at Oz^ and this is clearly d^
;
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Similarly,
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.-. Z=
dw
"di

-ud. + ve^.

x= du

dt
-vO, -\-we,,

r= dv

Jt'
-wO^ + ue,.

CoR. In the same way it may be shown that the velo-

cities parallel to the moving axes are given by

115. Prop. B. To determine the equations of rotation

with reference to axes moving in any manner'^.

The preceding proposition is a simple corollary from the

parallelogram of velocities. The result will therefore be true

for any other kind of magnitude which also obeys the " paral-

lelogram law." In fact the demonstration is exactly the same.

Now angular velocities do obey this law. Hence the follow-

ing equations are clearly true:

* The results of these two propositions were first published by Mr Hayward,
in Yol. X. of the Camh. Phil. Trans. The latter set were subsequently inde-
pendently obtained by Prof. Slesser, of Belfast, as an extension of the equations
in Art. 107, which had been previously shown to him by the author.
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It may be observed that these equations contain no quan-

tities independent of the moving axes.

116. It will frequently be necessary to refer these moving
axes to other axes fixed in space. Taking the same notation

as in Art. 103, it is obvious (the axes being treated as a body
consisting simply of three straight lines) that we shall obtain

the results

-^ sin ^ = — ^j cos (j> + 0^ sin
(f)

Cut

-T— ^1 sin (j) + 0^ cos cj)

These equations will determine 6^, 6,^^ 6^ in terms of the

arbitrary quantities 6,
(f), ^fr.

117. Ex. A perfectly rough plane revolves uniformly
about a vertical axis in its own plane, a spliere heing placed in

contact with the plane, rolls along it under the action ofgravity.
It is requirdd to find the motion.

Let the axis of revolution be taken as the axis of z, and
let the axis of x be fixed in the plane and turn round the

axis of z with an angular velocity n. Let a be the radius

and M the mass of the sphere ; F, F' the frictions between it

and the plane resolved along the axes of x and z, and R the

normal reaction. The equations of motion of the centre of

gravity are by Art. 59

d'x , F .^,

-5?-^^ = ]^ «

^ ^ dx R ,^.-an''+2n-^ = -^ (2)
dt M ^ '

dF— ^-^Tl (^)-

R. D. 10
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The equations of rotation by Art. 113 are

dw^ F'a , .__^^^ = ____ (4)

^^ + -^ = ^ (^)

da,, _ Fa , .

-df-A (^)-

The geometrical equations, since the point in contact

with the plane is at rest relatively to the plane, are

^^ ^ /-\

rf«+«'»'=«
(^)

2^-«"x=o (8).

To solve these, we proceed thus. Substituting from (7)

in (6) we get F=—^ -^ . Hence by (1)

A + ila'd'x ,_____„ ^ = (9).

Let '

AA_\fi — s^^* *• Then sin ^ = . / - . Solving equa-

tion (9) we get

where a, p are arbitrary constants.

Again substituting from (8) in (4) and (5) we have

d^z Fa' 1

d(Oy dz«^ + w^ = I

\:
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integrating this last,

Hence from (3)

{A + 3fa')
II

+ An'z =Ay- Mga^

^-Ma'g.

To simplify the constants suppose the sphere to start

from rest, and let the initial co-ordinates of the centre of

gravity hQ x = x^,y = a^ z = 0.

Then a =^ = |°, and 7 = 0.

Hence -j^ + r^ cosV ,z = —g sinV;

.'. z — — —J tanV [1 — cos {nt cos i)].

Thus it appears that the sphere will not fall down. It

will never descend more than -— below its original posi-

tion. If n be zero the above value of z becomes

z — — ~q sin' i . t,

118. Ex. A sphere rolls under the action of gravity

on a perfectly rough surface of revolution^ placed with its axis

offigure vertical. It is required to determine the motion.

Let the moving axes of (7, A and B be respectively the

normal to the surface, a tangent to the meridian of the surface

at the point of contact, and a perpendicular to both. Let the

axis of figure of the surface be taken as the axis of s, and let

any two fixed lines, at right angles, be taken as axes of x
and y.

10—2
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Let F, F' be the resolved parts of the friction along the

axes of A and B ; and R the normal reaction, a the radius

of the sphere.

Let the axes of C and z make an angle 6 with each other,

and let -^ be the angle between the planes Cz and xz. Then
clearly as in the second part of Art. 108,

Hence the equations of Art. 115 become

Jft), ^ d-dr dd F'a
, ,_._„^eos0^+a,3^=-^ (1).

^^H-a,3Sm^^ + a,,coseJ = --j- (2),

_s_„^__„^,,„^^ = (3),

the mass of the sphere being taken as unity.

The equations of Art. 114 for the motion of the centre

of gravity become, since t<j = 0,

J_,eos^!j =^sm0 + i^ W'

-u -^-v.^mO-^^R-gQosO (6).

And the geometi'ical equations are

u — a(o^ = Q (7),

'y + acOj = (8).

Also if p — a be the radius of curvature of the meridian

I
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of the surface, r the distance of the centre of the sphere

from the axis of z, we have

^^
«ft>2 = «^ = p-^ (9),

— a(i)^ = v = r -^ (10).

To solve these equations.

Eliminating F^ F\ u, v, we get

(^ + a')@-..cos.f)+^.3| = (11),

{A + «') (-^^ + tw, cos e -^] + Aoo^ sin 6 -^ =ffasm (9 ... (12),

^-<.,-^-a.,.rneJ = (13).

Multiplying these equations bj q)^, co^, ^^a, adding, and
integrating, we get

{A + a') (ft)/ + +Aa)^^ = a-h2jgpsmede (14),

an equation which may also be obtained from the principle

of vis viva*

Also by substituting from (9) and (10) in (13),

§-.(i-.^-^) (!«)•

Again, substituting from (9) and (10) in (11) we have

{A + a') (^ + ^ cos 6 co]+Aco, = (16).

Differentiating this, and substituting from (15), we have

d^Q), p ^ do). ^ ^
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where P is a known function of p, r, 6. Now p and r may
be found from the equation to the meridian curve as func-

tions of 0, Hence P is a known function of 6. Solving this

equation by the ordinary rules, we have w^ expressed in

terms of 6, and then by (14) and (15) a)^ and w^ may be
determined. Knowing w^ and w^, equations (9) and (10) will

determine 6 and -y^, and hence the motion of the sphere is

found.

119. If the surface of revolution be a sphere, we have

p sin = r, and hence by equation (15) Wg is constant. Equa-
tion (16) becomes in that case

.*. sin ^ . ft), = /3 + —.—\ . cos 6,A -{-a

The remainder of the solution is the same as before,

and does not present any difficulty.

120. Prop. V. To extend Eulers equations of motion
to the case in wMch the shape and structure of the body are

heing gradually altered during the motion hy changes of tem-^

perature or any other cause.

Let X, y, z be the co-ordinates of any particle of mass
m at the time t, referred to axes fixed in space. Then we
have the equation of motion

H^'i-^w>^ W'

and two similar equations.

L.I J,. Sr-
''-*-*'

I

<m i^l-yl) (^).

with similar expressions for h^, h^.

Then the equation (1) becomes

dt
-^ (^^'
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Let the motion be referred to three rectangular axes Ox^
Oy\ Oz moving in any manner about the origin 0. Let

a, yS, 7 be the angles these three axes make with the fixed

axis of z.

Now \ is the sum of the products of the mass of each

particle into twice the projection on the plane of xy of the

area of the surface traced out by the radius vector of that

particle drawn from the origin. Let ^/, h^, h^ be the

corresponding "areas" described on the planes xy\ y'z, z'x

respectively. Then by a known theorem proved in Geometry
of Three Dimensions, the sum of the projections of A/, h^^ h^

on xy is equal to ^g;

/. h^ = hj^ cos a + hJ cos ^+ hJ cosy (4).

Since the fixed axes are quite arbitrary, let them be
taken so that the moving axes are passing through them at

the time t. Then

and by the same reasoning as in Arts. 114 and 115, we can
deduce from equation (4) that

f=f-A;^.-^/.'^. (5),

where 6^, 6^, 6^ are the angular velocities of the axes with
reference to themselves.

Hence the equations of motion of the system become

(6).

These equations may be put under another form which
is more convenient. Let x, y', z be the co-ordinates of the
particle m referred to the moving axes, and let

^.=^K^'f-^'S
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Since tlie fixed axes coincide with tliese at the time t,

we have

and by Art. 114,

and by similar reasoning,

Hence the general equation of motion becomes

+ [B-A) e,e,+Ee,0,-DeA + 6A - 6

A

= n...... (t),"

and two similar equations.

Let the moving axes be so chosen as to coincide with the

principal axes at the time t. Then D = 0, E= 0, F= 0, and ^
these equations become *

^ {AO, + H,) -{B-C) 6A + e.,E,- 6A = L

{Be,+H,) - [c-A) eA+OA - oa=m

(
ce, + H,) -(A-B) BA + 0A-eA=N

(8).

, In these equations ff^, 11^, H^ give the motions of the
system relative to the moving axes. Thus if the body be a

* These equations are due to Liouville, and were published in his Mathe-
matical Journal in 1858!
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rigid body, and if w^, w^? ^3 were the angular velocities about

the axes, we have

by Art. 92.

Euler's equations and the equations of Art. 115 are in-

cluded in these equations as particular cases. Thus, if the

system be a rigid body, and if the moving axes be fixed in

the body, H^ = 0, H^ = 0, H^ = 0, and the equations become

and two similar equations.

If every axis in the body at be a principal axis, we get

and two similar equations.

121. If the motion be such that the system is always
symmetrical about each of the three moving axes, we have
ffj^=0, H^ =-0, -S3 = 0. The equations then become

(9).

122. Ex. An ellipsoid whose centre is fixed contracts hy
cooling, and being set in motion in any manner is under the

action ofno forces. Determine the motion. Liouville's Journal.

Since the principal diameters are principal axes at the fixed

point, we may take them as moving axes of reference. Also
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since the body is symmetrical about the axes, we may use

equations (9). Hence we have

dt

d_

dt
^-^^^^

Multiplying these equations respectively by Ad^, B6^, C6^f

adding and integrating, we get

A'e,'+B'e^'+c'e^'=k\

where 7c is some constant.

To obtain another integral assume that

A = AJ{t), B = BJ(t), C=CJ{t).

Also let ej{t)^u,, ej{t) = u„ ej(t) = u„

jrp -t

and —;- = ^i7-r , then the equations become
dt fit)

^

and these equations will be integrated in the next section.
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Sect. III. The motion of a body of any form under the

action of no external forces.

123. Prop. To determine ike motion of a tody about a

fixed pointy in the case in which there are no impressed forces.

The equations of motion are

multiplying these respectively by w^, eoj, co^) adding and inte-

grating we get

^«;^ + ^a)./+(7a)3^ = A^ (1),

where A* is an arbitrary constant.

Again, multiplying the equations respectively by Aco^,

Boo^, C(o^ we get, similarly,

A'co^-VB'w^+CPcD^^h' (2),

where h* is an arbitrary constant.

These two first integrals may be deduced, as will here-

after be seen, from the principles of vis viva and Conser-
vation of Areas.

To find a third integral, let

< +< + a,3'=a)' (3);

dco.
, Jft)„ d(t). d(o

then multiplying the original equations respectively by -^ ,

^ , -^ , and adding we get
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d(o (B-G C-A A
A '^ B ^ a

-B\
,(4).

But solving the equations (1), (2), (3), we get

{A-0){A-B)

GA
{B-A){B-G)

AB
, . ^ ^

{G-B){C-A)-S~^^^'''

(5),

where X^ =
h'{B+C)-k'

BC , with similar expressions for \ and

Substituting in equation (4), we have

d(o
ft) i^ = '/(\-<o'){\-o,'){\-co^)

dt
(6),

Since
BC{B- C) 4- GA {C-A)+AB {A

{B-G){C-A){A-B)
B) =-1. I

The integration of equation (6) can be reduced without

difficulty to depend on an elliptical integral. The integration

can be effected in finite ternas in two cases; when A = B,
and when Z:* = Bh"^, where B is neither the greatest nor the

least of the three quantities A, Bj G. Both these cases will

be discussed further on.

124. Let the momental ellipsoid at the fixed point be

constructed, and let its equation be

Ax' + Bf+Cz' = €' ,(7).

Let r be the radius vector of the momental ellipsoid coinci-

dent with the instantaneous axis, and p the perpendicular from

the centre on the tangent plane at the extremity, of r. Also,

as before, let (o be the angular velocity about the instantaneous

axis.
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I since

ft)j 0)3 ft>3 ft)

x~ y
" z r

'

comparing equations (1) and (7) we get

«=3-^ W-

Again, the expression for the perpendicular on the tangent

plane at {x, 2/, z) is known to be

hence, as before, comparing this equation with (2), we have

0)^ hy

Comparing this with (8) we see that

- P-% (9)-

From these two equations we infer

:

First, The angular velocity about the radius vector round

which the hody is turning varies as that radius vector.

Secondly, The perpendicular on the tangent plane at the

extemity of the axis of revolution is constant, or, which is the

same thing, the area of the section of the momental ellipsoid

diametral to the axis of revolution is constant and equal to

TT

hs/ABO'
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Thirdly. The angular velocity about p the perpendicular

on the tangent plane is constant. For the cosine of the angle

between v and r is^ , hence the resolved angular velocity is

o)f = |by(8)and(9).

125. It remains to determine the motion of the body in

space. This may be deduced from equations (IV) but we may
proceed more simply thus

:

If the body be referred to axes fixed in space, then

Integrating, we have

So also 2m(2^§-2§) = /^.

^ ( dx dz\ ,

\'>\'> \ being arbitrary constants to ^e determined from the

initial conditions of motion.

Let the motion be referred to three co-ordinate axes Ox\
Oy\ Oz moving in any manner about the fixed point 0. Let
Oj, ^1, c/, ttg, ^2, c^; ^3, ?>g, C3 be the direction-cosines of these

with reference to the former system of axes. Also let h^, A^',

h^ be the quantities corresponding to \,\^\.

Now \^^m
\^'^f~'y ~j:) ^s the sum of the products of

the mass of each particle into twice the projection on the plane

of xy of the area of the surface traced out by the radius vector

of that particle drawn from the origin.
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Hence by a known theorem proved in Analytical Geo-
metry of Three Dimensions, the sum of the projections of

h^, A/, Ji^ on the plane of xy is equal to h^
;

= Xm {x^ + y'^) ft),' — %mxz', w^' — Xmy'z . Wy',

Take the second system of axes so that the principal axes

of the body coincide with them at the moment under con-

sideration. Then

Hence the above equation becomes

So also h^ — Aco^ . a^ + Bco^ . a^ + Cw^ . a^
,

\ = A(D^,\-{- B(o^ . \ + Cw^ . ^3

.

The straight line whose direction cosines are proportional

to \, Ag, A3 is clearly fixed throughout the motion. It is

therefore called the *' Invariable Line."

Let a, 13, 7 be the angles made by the invariable line with
the principal axes. Then

Substituting and remembering the equations

with four other similar equations, we get

Aq},
cos a

Jc'
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Similarly,

cos p = -j^ , and cos 7 = -j^ .

These are the direction-cosines of a line fixed in space

referred to axes fixed in the body and moving with it.

The direction-cosines of the instantaneous axis are

CO (0 (O

hence this axis meets the momental ellipsoid in a point

whose co-ordinates are

h"^' h"'' h"'-

The equation to the tangent plane at this point is therefore

AcOjX + Bco^y + Cco^z = e^A
;

hence it is perpendicular to the invariable line. Also as its

distance from the fixed point is constant, this tangent plane

•is absolutely fixed in space.

The motion of the momental ellipsoid is therefore such that,

its centre heing fixed, it always touches a fixed plane, and the

point of contact being in the instantaneous axis has no velocity.

Hence the motion may be represented by supposing the cen-

tral ellipsoid to roll on the fixed plane, with its centre fixed.

This plane is called the " Invariable tangent Plane."

126. The motion of the ellipsoid has been represented

by supposing it to roll on a certain plane, the centre of the

ellipsoid being supposed fixed. The point of contact is the

extremity of the instantaneous axis, which therefore traces

out two curves, one on the surface of the ellipsoid which is

fixed in the body, and the other on the plane which is fixed

in space. The first of these curves is called the polhode, the

second the herpolhode.

This same motion may be also represented geometrically

in another manner. If the extremity of a radius vector from

1
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the fixed point trace out the polhode, the radius vector itself

traces out a conical surface fixed in the body which is of the

second order. If the extremity of a radius vector traces out

the herpolhode, the radius vector itself traces out a conical

surface fixed in space. If we suppose the first of these sur-

faces to roll on the second, the motion of the body will be

truly represented.

These representations of the motion are due to Poinsot.

127. If a body, having one point fixed, be set in rotation

about any axis, it will not in general continue to rotate about

it, but the axis will describe on the central ellipsoid the pol-

hode passing through its initial position. It is also evident

that it will move along this polhode always in the same
direction. The equations to any polhode may be found from
the consideration that the length of the perpendicular on the

tangent plane at any point of the polhode is constant. Hence
by Art. 124 its equations are

Aa? + Bf + a^ = eM '

where X is the variable parameter. Eliminating y we have

Hence if B be the axis of greatest or least moment of

inertia, the signs of the coefficients of x^ and z^ will be the
same, and the projection of the polhode will be an ellipse.

But if B be the axis of mean moment of inertia, the projec-

tion is an hyperbola.

It follows, therefore, that all the polhodes are closed curves
drawn round the axes of greatest and least moment. The
boundary line which separates the two sets of polhodes is

that polhode whose projection on the plane perpendicular to

the axis of mean moment consists of an hyperbola whose con-
cavity tends neither to the axis of greatest nor to the axis of

least moment. In this case the projection consists of two
straight lines whose equations are

A {A- B)ix? -- G [B- C) z"" = 0,

B. D. H
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Hence the polhode consists of two ellipses passing through

the axis of mean moment, and therefore it corresponds to the

case in which the perpendicular on the tangent plane is equal

to the mean axis of the ellipsoid. This polhode is called the
" separating polhode."

128. It is clear that the extremity of the axis of revo-

lution will describe a closed curve round the axis of greatest

or least moment according as it is initially on the one side or

the other of the separating polhode. But in no case can it

describe a closed curve about the axis of mean moment. This
is usually expressed by saying that the rotations about the

axes of greatest and least moment are stable, while that about

the mean axis is unstahle. These expressions are not how-
ever perfectly accurate, for the projection of the polhode on
the plane of xy being

A{A- C)x' + B{B- C)f = \' - Ce\

if the quantities A{A-C), B{B-C) should differ very
much from each other, the polhode will be an elongated oval,

and though the axis might have been originally only very
slightly displaced from the principal axis, it will recede very
far from it. So again if the extremity of the axis of revo-
lution be placed on the separating polhode it is possible that
it may tend continually to approach nearer to coincidence
with the principal axis of mean moment. For, let B be the
axis of mean moment, and A the axis of greatest moment,
then

A{A-B)x'=C{B-C)z'';

but since x and z are proportional to w^, ©3, this becomes

A[A-B)<o^'=C{B-C)a>^\

But A'cD^'+ B'<o^' + (7^< = 7c^

;

therefore

AB{A-C) <o^' ={B-C) {k*

-

5V) IBC {A ^ C) 0,/ ={A-B) {k'-£W) I
(!)•
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But B^\-(G-A)w^w^ = 0;

when ft)^, 0)3 have like signs {G — A)a)^Q)^ is negative, and

therefore -7-^^ must befnegative, hence in this expression the

upper or lower sign is to be used according as w^, co^ have like

or unlike signs.

iv
B iay,__l nA-B)[B-G)
B'(o^'\dt 'By AG

= + n suppose

Jc' + Bay^

Hence as t is indefiiitely increased w^ approaches to + -» ^^

its limit, and therefoiB by (1) cOj and co^ approach zero.

The conclusion therefore is that the axis of revolution

continually approaches to coincidence with the mean axis of

principal moment, but never actually coincides with it. It

approaches the nearest end of the mean axis when w^, cDg have
unlike signs.

129. Prop. To find the form of the herpolhode.

Let s represent the arc of the polhode, and a that of the

herpolhode. Then since one curve rolls on the other

s = c- (1).

Let r be the radius vector of the polhode measured from
the centre of the ellipsoid, and p that of the herpolhode

measured from the foot of the perpendicular drawn from

the centre of the ellipsoid on the fixed plane, containing

the herpolhode ; then if/be this perpendicular

^^f + p' (2).

11—2
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Let the equation to the polhde be expressed in the

form

*(*,^)=0 (3),

then the equation to the herpolhode is

^{<rjf + p^='i (4).

130. Since the projection of the polhode on one of the

principal planes is always an ellipse, the polhode must be

a re-entering curve.

By considering the herpolhode to be traced out by the

rolling of an ellipsoid on the plane of the paper, it is clear

that the herpolhode always lies betwen two circles which
it alternately touches. The herpolhocfe is therefore not in

general re-entering ; but if the angular distance of the two
points in which it successively touche? the same circle be
commensurable with 27r, it will be a re-eitering curve.

131. The equation to the herpolhode cannot generally

be found. If however the polhode be the separating polhode,

the integrations can be effected and the herpolhode can be
found. The polhode is in this case a pane curve and there-

fore an ellipse. Let /3, h, be the semi-axes of the ellipse.

(7
\ 2

-T-j is the square of the sine of the angle be-

tween any radius vector r and the perpendicular p on the

tangent. Let r be the semi-diameter conjugate to r. Then

\ds) r^~7^r'^

but r'^ = p^ + 5^ ; therefore rdr = pdp
;

m- -p' '
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but {dsY = {dpy + p^ [dOy, where 6 is tlie vectorial angle, hence

pNn' - /o^

where n^ =^— })\ Integrating we have

P

the prime radius being drawn to the point where the

plane of the herpolhode is met hj the instantaneous axis

This is the equation to the herpolhode. It remains to

find h and /3 in terms of A, B, G. Since y8 is a diameter

of the section of the ellipsoid made by the plane containing

the axes A and (7, and is such that the perpendicular on the

tangent at its extremity = h, we have

where a and c are the semi-axes of the section

;

/. n^ = ^'-W = -

W

6* 6* 6*

after some reduction. But a'^ = ^ , y^—'j^-i ^ = -p

hence

n^ _ {A--B),{B-G)
€'~ A.B,G

and the equation to the herpolhode becomes

P
__

n^JB
where g =—2~ •
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This is the equation to a double spiral whose two branches

form an infinite number of revolutions in opposite directions

about thje origin, and approach it without limit.

132. Prop. To find the velocity with which the ex-

tremity of the instantaneous axis traverses the poThode or

her^olhode.

Let V = 4-~-T ^e the velocity with which the instan-
dt dt

taneous axis traverses either curve, and co the angular ve-

locity of the body about the instantaneous axis. Let R, R'

be the principal radii of curvature at a common point of the

polhode and herpolhode of the two conical surfaces traced out

in the body and in space by the instantaneous axis. These

surfaces may be supposed to be made up of triangular planes.

Let ds and de be the inclinations of two successive planes.

Then the body in turning round the instantaneous axis de-

scribes the angle ds ± de. But it also describes wdt
;

But

the upper or lower sign to be used according as the curvatures

are in opposite or the same directions.

As an example of the utility of this formula let us
consider the case of the earth set in rotation about an axis

making an angle a with the axis of figure. Then both the

polhode and herpolhode are circles. Let c be the radius vector

of the spheroid which is the initial axis of revolution.

Then by Meunier's theorem in Geometry of Three
Dimensions,

jR cos a = radius of polhode

= c sin a,

.'.
, a)dt = id6±de'.

de.
ds

ds'
do-

~R''

.'.
ds

" dt (h RT
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R' = radius of herpolhode

= c sin /8

;

where /3 is the angle which the instantaneous axis makes
with the invariable line,

27r
and 6) =

24 X 60 X 60'

whence v may be found by the theorem.

If T, T be the times in which the axis of revolution de-

scribes complete circles in the Earth and in space respectively,

then

^ _27rc sin a ^, _ 27rc sin ^
V ' y *

133. The momental ellipsoid is the reciprocal surface of

the ellipsoid of gyration. Every curve on the one surface has

its reciprocal curve on the other. The reciprocal curves of the

polhode corresponding to any value of ^, the constant perpen-

dicular on the tangent plane, are the curv^es of intersection

of the ellipsoid of gyration with the sphere whose radius

is r = — . The reciprocal curves of the separating polhode

are the central circular sections. The invariable line though
fixed in space moves in the body, its intersection with the

ellipsoid of gyration traces out the reciprocal of the polhode
described by the instantaneous axis. The invariable line thus

describes in the body a right cone on an elliptic base. This
cone becomes a plane when the instantaneous axis describes

the separating polhode. Hence in this case the body moves
so that a certain plane fixed in the body always passes through

a straight line fixed in space.

134. It is well known that the steadiness or stability of

a moving body is much increased by a rapid rotation about

a principal axis. The reason of this is as follows. The in-

stantaneous axis describes a polhode in the body and a

herpolhode in space. If the body be set rotating about an
axis very near the principal axis of greatest or least moment,
both the polhode and herpolhode will generally be very small
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curves, and the direction of that principal axis of the body-

will be very nearly fixed in space. If now a small impulse

/ act on the body, the effect will be to alter slightly the

position of the instantaneous axis. It will be moved from
one polhode to another very near the former, and thus the

angular position of the axis in space will not be much
affected. Let O be the angular velocity of the body, co that

generated by the impulse, then by the parallelogram of

angular velocities, the change in the position of the instan-

taneous axis cannot be greater than sin"* ^ . If therefore 11

be great, w must also be great, to produce any considerable

change in the axis of rotation. But if the body had no
initial rotation O, the impulse may generate an angular

velocity co about an axis not nearly coincident with a prin-

cipal axis. Both the polhode and the herpolhode may then

be large curves, and the instantaneous axis of rotation will

move about both in the body and in space. The motion will

then appear very unsteady. In this manner, for example, we
may explain why in the game of cup and ball, spinning the

ball about a vertical axis makes it more easy to catch on
the spike. Any motion caused by a wrong pull of the string

or by gravity, will not produce so great a change of motion
as it would have done if the ball had been initially at rest.

The fixed direction of the earth's axis in space is also due
to its rotation about its axis of figure.

135. When the invariable line is taken as the axis of z

the equations of motion may be put under another form.

The direction-cosines of the invariable line are

A(o. ^ B(o^ Cq}„
cos a =-^2', cos^ =-^, cos7=-^2 .

Eeferring to the figure of Art. 103, we have

cos a = cos AE . cos EZ= — cos ^ . sin

cos yS = cos BE . cos EZ= sin </> . sin ^

cos 7 = cos CZ = cos 6,

I
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Equating these values of cos a, cos /3, cos 7 we get w^, w^,

Wg in terms of 6 and <^. Then substituting in the geometrical
equations of Art. 103, we have

d6 72'/l'J i/l 1
-^ = — A: sm d sm (p cos 9 I -j

—
dt B.

• n ^^ 7 2- /I
/cos'^ <f)

.
sin^ <i\sm^^ = Z:^sm^(-^+-^^j

# + cos^^ =^^
dt dt C

1{ A=B, these equations will be greatly simplified. We
have in that case

f + ^^^^^ =

dd

dt

djr

dt
'

d^ir

A
li cos Q

C

The results of the next Article may be easily deduced
from these equations.

136. Prop. To determine the motion of the hody when
two of the principal moments at the fixed point are equal.

Let the body be set rotating with an angular velocity <a

about an instantaneous axis 01^ making an angle a with

C the axis of figm-e.

The momental ellipsoid becomes in this case a spheroid,

the axis of which is the axis of the body. From the sym-
metry of the figure it is evident that as the spheroid rolls

on the invariable plane, the angles LOG, L 01 are constant^

and that the three axes 0/, OL, 00 are always in one
plane.
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The section of the momental ellipsoid by the plane in

which 0/, OL, OG lie is an ellipse whose semi-axes are .

\/-J
and x/-p. Also, OL being perpendicular to the tan-

gent at / to this ellipse, is perpendicular to the conjugate dia-

meter of 0/; .'.by conies

tan /3 = 7"} tan a.

The angular velocity of the body about 01 varies as the

radius vector 01 of the spheroid, and is therefore constant.

Hence 01 describes a right cone in the body round C with
a uniform angular velocity, and a right cone in space round
OL with a uniform angular velocity.

The angular velocity v of 01 round 00 in the body may
be found most readily by referring to the original equations of

motion in Art. 123. We have in this case

dt

dw„

A- G— n ft)2=0

+ n
A- G

dt A
Solving these in the usual way we have

i^cos (
~O), A

'A-G

nt+f

^FBm(^^nt +f)
^

where F and / are arbitrary constants. Let ^ ^^ ^^^^ angle

the projection of the instantaneous axis on the plane perpen-

dicular to OG makes with the fixed straight line which has

been taken for the axis OA, then

tan x = - and.^J;
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where n = co cos a. is the angular velocity about the axis of

figure.

The angular velocity v of 01 round OL in space may
be found from the consideration that OC, 01, OL are

always in one plane. Describe a sphere round as centre

cutting OC, OL in C and L. The displacement CC of G
in the time dt due to the angular velocity (o round / is

CO sin adt. Hence q) -—-^ dt is the ancrle made by the two
sm p

^

arcs CL, C'L on the sphere. But, since OC, 01, OL are

always in one plane, this is the angular velocity of 01 about

OL, Hence
sin a

ft)

sinyS

V^' sin' a + C cos' a
ft) 3

Sect. IV. Small Oscillations in Three Dimensions about a

position of equilibrium,

137. Problems of small oscillations are usually of two
kinds. The mean position about which the oscillation takes

place may either be fixed or it may have a motion in space.

These will be considered in turn. As an example of the

former, we may have a body in equilibrium rotating about an
axis through its centre of gravity and under any conditions

of constraint. Suppose the body to be slightly disturbed, we
have first to determine whether it will or will not remain
near its position of rest. One condition will usually be that

the axis of rotation must be very near to a principal axis in

the body, for no other axis could be one of free permanent
rotation. We have also to determine the motion of the body
about its position of rest. This will be determined when we
know at every instant the position of a line fixed in the body
and the angular velocity about it.
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There are two simplifications which when they occur will

be of the greatest assistance, first, the angular velocity about
the principal axis which was very near to the instantaneous

axis of rotation at the beginning of the motion may be con-

stant, and secondly
J
when gravity is the only force, the alti-

tude of the centre of gravity above some horizontal fixed

plane may be constant. A little consideration will show that

these will be true in most cases.

The general problem to be considered in this section may
be stated as follows

:

Peob. a hody has one point fixed in space and is m ro-

tation about an instantaneous axis which makes a small angle

with a principal axis in the hody at the fixed point. Suppos-

ing the hody to he making small oscillations ahout its mean
position, it is required to determine the motion.

138. First method. Let () be the fixed point, OA, OB, 00
the principal axes at that point, and let 0(7 be that prin-

cipal axis from which the instantaneous axis is never far

distant. Let the mean position of 00 be taken as the axis

of ^.

By hypothesis X, M, N, the moments of the forces about

the axes are all small quantities, also 0)^, o)^ are small. Let n
be the mean value of cWg, then in the small terms we may
put Wg = n. Hence the equations of motion become

A~'-{B-0)nco^ = l

B^^-{O^A)nco, =M

^df =N

(1).

Let the position of the axis 0(7 in space be defined as

usual by the angles 6,
(f),

-yjr, and let

^ = sin ^ cos (j) ] . .

q = — &mOsm(j) J

then^ and q are both small quantities.
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Eeferring to the figure and reasoning of Art. 103, we have

_+eos^^=«3,

de . ^ • z)^^ JL
Wj = -,- sm ^ — sm c/ -^ cos 9

,

A ndO . , . /, ./ d^\
.*. &)j COS 6 = cos 6-T- sin ^ — sin ^ cos ( Wg—-^\ ,

similarly,
J-

(3).

Also — "p and — q are the direction-cosines of OZ with

reference to the axes OA and OB, for

—p = — sin ^ cos
<f>
— cos ZE . cos^^= cos AZ,

Similarly, ~ 9.— cos BZ.

But since 0(7 very nearly coincides with OZ^ 6 is very

small and the above equations become

d<b d'dr

da

dp

w-

Let the axis Ox be so chosen that the mean value of

(f)
+ yfr = nt. Let two axes Ox, Oi/' revolve round Oz with

an angular velocity n, so that the angle xOx=nt. Then
these moving axes will never deviate far from the principal

axes OA, OB. Also p and q will now be the direction-

cosines of OC referred to these moving axes Ox, Oy , For
the points G and A lie very nearly in the arc joining Zx\
hence since Zx and GA are both right angles, the arcs ZA
and Gx are supplements, and /. ^ = — cos ZA = cos Gx.
Similarly, q = cos Gy

,
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Substituting for w^ and w^ from (4) in the equations of

motion we get

B
df

dt

(A^B-C)n^^-{A C)n^p^M y (A).

c
^dci

dt
=N

These equations are linear, and when solved will deter-

mine the motion of OC with reference to the moving axes

Ox, OiJ . The motion oi OG referred to 2^nj fixed axes in

space can then be easily found.

139. The quantities L and M are the moments about

the axes OA and OB, and by the geometry peculiar to the

proposed question must be expressed in terms oi p and q.

Since the squares of p and q are to be neglected, these ex-

pressions will be of the form

L — ap-\-a'q\

M^hp + b'q]'

If it be diflScult to find the moments of the forces about
OA, OB, we may find the moments about' the axes Ox, Oy\
Oz, Let these be L, M! , N'; then

L = L' cos Ax + M' cos Ay +N' cos Az'

since M', N' are small quantities and the angles Ay\ Az'
are nearly right angles.

Similarly if= M', N= N'. Thus the moments of the

forces are the same whether they he taken about the principal

axes OA, OB, OC, or about the co-ordinate axes Ox, Oy\
Oz\

In finding these moments the following remark will also

be useful. Ifp', q, 1 be the direction-cosines of any line OP
near OG referred to the axes OA, OB, OG^ then its direc-

tion-cosines referred to Ooc, Oy', Oz will be respectively

p-\-p\ q + q, and 1.
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For join CA by an arc of a great circle, and drop per-

pendiculars FN^ x'n on it from P and a?'. Then since ^ FN
and / X7i are very small, cos / Fx and cos ^ Xii only diflfer

by quantities of the second order, hence

cos Fx' = cos Nn

= sin {C71+NA)

= sin Gn cosNA + cos CW sin NA.

Now CW and AN are nearly right angles, and when
multiplied by small terms their sines may be taken equal

to unity. Also cos NA = cos FA =p', and cos Cn = cos Cx =p
when we reject the squares of small quantities. Hence we
have

cos Fx =p -\- p'

J

and similarly

cos Fy' = q + q''

140. The equations for the determination of j) and q
will in general be of the form

d''p ,dq 7, , ,

(1),

and they must be solved by the methods described in treatises

on Differential Equations. For convenience of reference, we
shall here give a short summary of the different steps.

Case L It will frequently happen that the terms hp,

Vq are absent. When this is the case, assume

j? = i^cos(\«+/))

$'=6^sin(X^+/)j

substituting, we get

(2),

i^lX'^ + C)
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whence we have the biquadratic

(V + c) (\^ + c') =««V ;. (4),

for the determination of X while either of equations (3) will

give the ratio -^

.

Supposing the four values of X to be all real, as will

generally be the case, and equal to ±\,±\, then the

complete integral will be

p = i^cos (\ t +/) + F' cos (\, t +/)

where F, F\ f^f, are four arbitrary constants to be deter-

>

mined by the initial values of », ^ -^ , -,-

.

If the four roots of the equation (4) be not all real, the

expressions for p and q must be rationalized by writing for

the sine and cosine their exponential values.

The equation (4) may be written in the form

X* + (c 4- c' ~ aa) X^ + cc = 0.

In order that these values of V may be real we must
have

{c + c — aa'Y — ^cc = a positive quantity (A)

.

In order that the two values of V may have the sam
sign we must have the last term of the quadratic positive,

.*, cc — a positive quantity (B).

In order that the values of V may both be positive, we
must have the second term of the quadratic negative

;

.*. c-{-c —aa =^a negative quantity (C)

.
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The condition (A) is satisfied if c + c' and aa have oppo-

site signs. If c, c be both negative and aa positive, all

three conditions are satisfied.

141. Case IL If the equations be complete, assume

^ = ^^"1
(2)

2 = 6^6^ ^''

substituting, we get

G{\'-c)=F(b--a\)

F(X-c')==G{b' + a'\)

whence we have the biquadratic

(X'-c) (X'-c') = (&-aX) {b' + a'\) (4)

)-a\) )

for the determination of X while either of the equations (3)

will give the ratio -p.

If all the roots of this equation be real, the motion will

not be oscillatory, a positive root will correspond to a motion
that continually increases, a negative root to a motion that

gradually dies away.

A pair of negative roots X = a. ± ^ V— 1 corresponds to

two terms in (2) of the form

^ = {F+ F') e«« cos ^t + (F- F') V^,€«^ sin ^t
\

2 = [G + G') e^t COS ^t+{G-G') V- 1 6««sih/e^

and imaginary values must be, given to F, F' and G, G' to

render these expressions real.

' From equation (3) we have

G h-^aX
. /—

:

E.D. 12
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where u and v are known, the value of \ = a + ySV— 1 being

substituted from equation (4). Hence clearly when we write

X = a — /3V— 1, we have

Therefore if the first equation be written in the form

p = He"* cos ^t+ Ze"' sin ^t,

the second will take the form

^ = {Hu 4- Kv) e«* cos fit + {Ku - Hv) €«« sin /5i.

It is evident that unless a be either zero or negative,

the motion cannot be considered one of small oscillation.

The equation (4) maj be written in the form

X* - (c + c'

-

aa) \'+ (ah' - ah) \-Vcc'- hV = 0. f {

In order that the four roots of this equation may be of

the form X = + yS V— 1, we must have

aV-a'h = (i (A).

Then as before, in order that the two values of X'^ may
be real, both of the same sign, and that sign negative, we
must have

[c + C'-aay-4.{cc-hV)\

cc — hh' \ all positive ... (B).

c-\-c - aa' ^

142. Ex. A conical top Jia^ its vertex resting on a per*
fectly rough horizontal plane, and is in rotation with its axis

offigure very nearly vertical. Find the least angular velocity

that it may not tumble down.
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The only force, besides those at the fixed point, which
acts on the body is gravity, and if h be the distance of the

centre of gravity from the vertex, the moments of these about
the axes are

M= zX—xZ= hpg.

Hence the equations of motion in Art. 138 become

A^^{'iA-C)n^^-{A-G)n\^hg.gi,

taking the mass of the body to be unity.

These equations may be written in the form

. d^p dq ,

To solve these, assume

^ = i^cos(X^+/)l

^ = 6^ sin {\t +f) \
*

Substituting we have

or, A\^±{2A-C)n,\+{A-'G)n^+ gh = 0',

]'

2A- G ^ ^ ^C'n'-4:A.gh

12—2

••'' = +"lZ--«± - iA



180 MOTION OF A RIGID BODY.

In order that the top may not tumble down, these values

of X must be real. Hence we must have

n not less than 7y~ •

143. Second Method. When the body is such that two
of the principal moments of inertia at the fixed point are

equal, the equations of the first method may be changed into

another form. Instead of referring the motion of G to two
axes Ox', Oy which move in space in a known manner, we
may refer it to two fixed axes OX, O Y,

Let be the fixed point ; Q the principal axis about

which the body rotates, and let OA, OB be two other

principal axes which move in the body with an angular

velocity = — w, and which therefore never deviate far from
•the fixed axes OX, OY,

The equations of motion referred to the axes OA, OB, 00
are by Art. 107,

A l-~ — ncoA + {A— C) nco^

dco^

dt

M

N

(1).

Let P, Q be the direction-cosines of 00 referred to the

fixed axes. ThenP = cos
(
OX

)

,

dP
dt

-sin (OX) "^d{GX)
dt

But 6)„ = K:—- and CX=- nearly.
dt

dP
dt

'

and similarly

dQ
dt

*
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Substituting these expressions in the equations (1), we get

.d-'Q ^ dP
J.

df dt

,d'F ^ dQ -_
(B),

which are the general equations of small oscillations.

144. Ex. I. A sphere is suspended from a fixed point

hy a string and inalces small oscillations about the vertical

through the point of suspension; find the motion.

Let I be the length and T the tension of the string ; P',

Q' the cosines of the angles it makes with two fixed hori-

zontal axes OX, OF drawn through the point of suspen-

sion, and let the positive direction of the axis of z be measured
downwards. Let G be the centre of the sphere, and CG
the radius passing through the point of contact C of the

string, and . let a be its length. Let CG produced cut the

sphere again in 0, and let 6^^ be the positive direction of the

axis of G,

Then the equations of motion are, taking the mass as unity,

Dynamical Equations,

d'x

de- "" '

df- ^^'

d\ „

. (d'Q dP\ , „
zY)

'

'=Ta{Q'--Q)
i

<£»'S)'^<^--j
Geometrical Equations,

x=lP' + aP,

y = lQ'+aQ,

z = l +a.
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By simplification these reduce to

gP'

d''Q d'Q
de

d'Q

df

df " dt̂̂ =f («'-<?)

g.„f=f(p--P)

To solve these put

P= i^cos [Xt^fj, P' =F cos {\t +f) ,

Q=G sin {\t +f), Q'=G' sin {\t -f/).

Then we have

F'{W-g)=-aVF

'+(x'-'^]G = +n\F

^F +

Hence we have

{-'-!) ^- iXG

{n\y,

which leads to

ax^-^)(v±,a-g) = |^x=

This equation gives four real values of \^. Let the values

of \be ±\, ±X^, ±\j ±\, Then the oscillation will be
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represented by P= F^ cos (\^ +/J + F^ cos (X^^ +X) + two
other terms, with similar expressions for F\ Q, Q\

F' C C^
The equations above will give the values of -=, , — , -—

-

corresponding to each value of X. Thus we shall have left

eight arbitrary constants, viz. F^, F^, F^, F^, f^, f^/f^, f^ to

be determined by the initial values of

If we take the negative values of X, we merely get the

same expression over again.

The values of P, P', &c. being known, those of cc, y, z

may be found, and thus the whole motion may be determined.

145. Ex. II. A hoop rolls along a perfectly rough
horizontal plane, it is required to determine the least angular

velocity that it may move with its plane very nearly vertical.

Supposing the hoop to be originally vertical it will from
symmetry roll along a curve which is nearly a straight line.

Let this be taken for the axis of x, and let the axis of y be
vertical. Let F, Z be the resolved parts of the friction along

the axes of y and z, and R be the normal reaction. Then
taking the mass of the hoop as unity we have R = g^

The equations of motion of the hoop are

.d^P ^ , dQ ^^

Now, M the moment of the forces about Oy is clearly = 0,

and L— — Za — Rad, where 6 is equal to the angle the projec-

tion of GO on the plane yz makes with Z. But 6 = Q;

.'. — L = Za-\- ag Q,
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Also if Xj y. z be the co-ordinates of G we have

But ft)^ = ft)j cos AOx^-w^ cos BOx + co^ cos COx

dt
^""^^

. ^ d'Q dP
dt^ dt

Substituting in the first equation, we have

(^ + a^)^ - « (2^ + a') J-^« (3 = 0,

and integrating the second equation

dP
dt
^7 = — 2?i + constant.

Hence we have

^+ ^ + a-
^ g=^^^^tant.

Therefore the hoop will roll if

^2 ^ (^9

2i2A+a')'

If the hoop be a circular arc, A =^ —
, and we have

""^Wa-
Let Fbe the velocity of the centre of the hoop, then we have
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146. Third Method. Suppose the geometrical relations

that constrain the body are such that one point of the instan-

taneous axis is known throughout the motion. Then we
know that in small oscillations we may take moments about

this point as if it was fixed. This will greatly simplify our

equations, for the unknown reactions will generally act at this

point.

Through this point, wdiich we will call (9, let axes Ox, Oy,

Oz, be drawn parallel to the principal axes GA, GB, GO
at the centre of gravity, and let 5, y, h be the co-ordinates

of G so that X, y, are very small.

Eeferring to first principles, we have by (101) the general

equation

Sm {y^ + z"') -^ -tm {/ - y') (o^ (o,+ 2myz («,' - «/)

=^L

and two other similar equations, where L, M, N are the

moments about the axes Ox, Oy, Oz respectively.

In these equations we are to neglect the squares of all

small quantities. Hence the squares and products of x, y,

o)^j Wy, —j^ , are to be rejected. Also since the axes are

parallel to the principal axes at G we have ^mxz = hx,
'%myz—hy, and %mxy~xy, the mass of the body being
taken as unity.

The equations therefore reduce to

at
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where A', ^, C are the moments of inertia about the axes of

Ox, Oy, Oz.

As before let ^ = ^ cos <^ 1

q= — 6 sin(f> i

Then the above become, as in Art. 1 38,

^'^ + {A'+B' -C)n^- {F- O) n'q-hy n'^-L

B'^ - {A' + B'- C) n ^j
- {A' - C) n'p -Jixn' =M y (C).

at

The moments X, M, N, and the quantities h, x^ y, must
then be found as before in terms of p and q by the geometry
of the question, and the equations will then become independ-

ent of the position of the instantaneous axis. They will^

therefore be true throughout the motion.

They may be integrated in the usual manner, and the]

whole motion may be found.

147. Ex. An ellipsoid is in rotation ahout a principc

diameter and is placed with the extremity of this diameter in

contact with a perfectly rough horizontal plane. Supposing
the body to make small oscillations, determine the motion.

By Art. 138 it is evident that the axes GC, GA, GB
make angles with the vertical whose direction-cosines are

1, —p, — q. Hence the resolved parts of gravity along the

axes Oz^ Ox, Oy will be Z^-^g, X—pg, Y=qg. Let x,

y, c be the co-ordinates of G referred to these axes, then we
have

L^-gy-cgq^
M—gx-\-cgp >•

A^ = J

We must now find x and "y in terms ofj? and q. Taking
the extremity of the axis of C as origin of a new set of
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axes x\ y\ z parallel to GA, GB, G C respectively, the equa-
tion to the surface is

2^ -
^, + ^,

,

z"^ . . . fx
the term — being neglected since it is of the order

(
—

Let X, y\ z be the co-ordinates of the point of contact

of the ellipsoid with the plane. The equation to the normal
at this point

f— X _ rj— y _ ^—z

ex cy — 1
'

? V
But this normal is the vertical, hence its direction-cosines

arel, -^, -^;
ex' ey

But X — — Xj and y' = —y^

a^p _ Z>V

c ' ^ c

Substituting in the general equations of motion we get

(1).

(6c^ + &^) J+ 12c^^f + (p'-o') (^n'^^]q=0

(6c^ + a^)J - 12c^n^ + (a^ - c^) (gti^ + ^) i?
=

To solve these, let

i?
= i^sin(X^+/),

q = Gcos {\t+f).

Substituting in (1), we shall get a biquadratic equation

to determine X.

In order that the motion may be oscillatory, the four

values of X must be real. Hence by Art. 140 the three quan-
tities
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11 '
"^ JW + a'

"^
Go' + by (6c' + «') (6c^ + ^')

J

-4 6/i' + 5r'
cj Qc'-^d' 6c' + b'

,2 . k9
'^'^''cjK,e?^ + a^

"^
6c^ +W "^

(6c^ 4- a'O (6c'^ + b^)
'

must all be positive.

If c be the least axis of the ellipsoid, these conditions are

satisfied for all values of n. See Art. 140.

If c be the mean axis of the ellipsoid, the second quantity

is essentially negative, and no value of n can be found that

will make the position of the ellipsoid stable.

If c be the greatest axis of the ellipsoid, the second con-

dition is satisfied. Let

H=^{(?- fl^) {6c' + h') + (c^ - ¥) (6c^ + a').

Then since the first quantity is positive we must have

|(144c* - 6^) n^-b^-HX-4. Un^ + ^)'(c' - a') (c' - h')

= positive quantity (A),

and since the third expression must be positive we have

lUc'-QH

If this value of n^ be substituted in the expression (A) it

makes {A) negative, hence this value of n^ lies between the

roots of the quadratic equation formed by equating {A) to

zero. In order therefore that the three conditions may be
satisfied we must have n^ greater than the greatest root of the

equation formed by equating (A) to zero. It is evident that

one of the roots of this equation is essentially positive.
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148. Fourth Method, When the "body performing small

oscillations is a rod, we may obtain the linear equations

of motion very simply by referring to the original equations

of motion in Chap. II. as in the following problem.

A uniform heavy rod suspended from a fixed point hy
a string, makes small oscillations about the vertical. Determine

the motion.

Let be taken as origin, and let the axis of z be
measured vertically downwards ; let I be the length of the

string, 2a the length of the rod. Let p\ q ; p, q be the

cosines of the angles the string and rod respectively make
with the axes of x and y, and let u be the distance of

any element du of the rod from that extremity to which
the string is attached. Then the co-ordinates of the ele-

ment will be
x = lp -^-up \

y^lq +uq\ • (1).

z ^l->ru ^

The equations of motion of the centre of gravity will be

dy
+ a

dy
df~

7>'

M
d\'

^ df
+ a

d'q

dt^
Tq

M
0=^-

T

(2),

where T is the tension of the string, and M the mass of the

rod. By D'Alembert's Principle, the equation of moments
round x will be

•

^ =tdu{yg)y
which becomes by (1)
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or

which by equation (2) reduces to

Therefore the four equations of motion are

"1

d^ df 9P

dt'
+ -''M'=-3P

and two similar equations for q, g^.

To solve these, put

y = i^sin(X« + a), ^ = 6^sin (\«+a)j

we get

o

.-. X'-
4a + 3? 3.9'

0,

(3),

and the values of \ may be found from this equation.

Sect. Y. On steady Motion and small Oscillations.

149. Hitherto we have supposed the body to be per-

forming small oscillations about its position of equilibrium.

But if the body have a steady motion in space and perform j

small oscillations about this moving position, the equations V

become more complicated. To simplify the problem, let two
of the principal moments -4, B^ at the fixed point be equal.

)
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The two following problems will be suflScient to show the

mode of proceeding in the cases first, when one point of

the body is absolutely fixed ; and secondly, when the body-

rolls freely on a rough plane.

150. Prob. I. A hody two of tchose principal moments
at the centre of gravity G are equal turns about a fixed point

0, in the axis of unequal moment under the action of gravity.

The axis G heing inclined to the vertical at an angle a, and
revolving ahout it ivith a uniform angular velocity, find the

condition that the motion may he steady and the time of a small

oscillation.

This applies to the case of a top spinning with its vertex

on a perfectly rough plane.

Let the fixed point be taken as the origin, and let the

axis of z be vertical. Let the line OG drawn from
through G the centre of gravity of the body be called the

axis of the body. Let the moving axes OA, OB, OG hQ
so chosen that 0(7 is the axis of the body, and that Oz,

OC, OA are always in one plane. Then by Art. 109 the

equations of motion are

dw.

dt
""^

dt
|)-(^-o).,.,=o

at

w,

and the geometrical equations are

dt

djr

dt

= (o„

sin

_dx d±
dt-^-tt'"'^

CO.

(2).
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This is the relation which must hold between the angular
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Eliminating oo^ (o^, and putting (o^= n, we get

^sm^^+2^ cos ^^1^-0.^ = (3),

^ ^.4cos(9sini9. ('^y+ Cn sin ^^=^^sin (9 ... (4).

To find the steady motion.

When the motion is steady both 6 and -^ are constants.

Let 6= a, -~- = X, then the equation (3) is satisfied and

(4) becomes
— A cos a sin a X^ + C!^ sin a X = gTi sin a.

Rejecting the factor sin a = because a is not small, we have

A cos clX^ -^-gh

'- '
velocity of the body about its axis, and the angular velocity

of that axis about the vertical, when the motion is steady.

But this relation is not necessary if the axis of the body be
vertical.

Solving this equation, we have

OW ± V(7V-4^A^cosa~
2A cos a

'

heuce in order that the motion may be steady, we must have

n^ not less than ^ ^^ •

When a and n are given, we can make the body move
with either of these values of X, by giving co^ its proper initial

value determined by the equation

«! = — Xsina.

To find the small oscillation.

.. Let ^ == a + ^',-and -^ = X + -^ , where 6' and -^ are
at dt dt

small quantities whose squares are to be neglected. Substi-

tuting these in (3) and (4), and writing for Cn its value
obtained from (5), we have

I
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Ak sm a -j^— W^ — ^^ cos a) -7- = ^

AX ^'+ sin a (57^ - ^X' cos a)^ + XM sln'^ a<9' = J

To solve these, put

$' = i^sin (p« +/), and yfr' = G cos (^e +/).

Substituting, we have

^\ sin a.jy^G =— {gh — AX^ cos a) Fp

{Akp"-X^A sin* a) F= -{gh- AX^ cos a) sin a . (^^ )

Hence multiplying these equations together, we have

a _ A^X"^ - 2ghA cos g . X^ + /A''

^ ~ ^V
27r*

and the required time is —- . It is evident that p^ is always

positive, and therefore both the values of X given by (5) cor-

respond to stable motions.

Tofind the friction at the fixed point.

The equations for the motion of the centre of gravity are

by Art. 63,

where u and v are the velocities of the centre of gravity re-

solved along and perpendicular to the projection of OA on the

horizontal plane, and X, Y are the resolved parts of the

frictions in the same directions.

• This expression was given by the Kev. N. M. Ferrers, of Gonville and
Caius College, as the result of a problem proposed by him for solution in the

Mathematical Tripos, 1859.

E, D. 13
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Since the point is fixed, we have

u = co^h cos 6
I

v = — co^h cosO J

ft)j and Wg are known from equations (2), and thus X and Y
may be found.

When the motion is steadjj we have from (2) ©^ = 0, and

©J = — X sin cc ; .'. w = and v = X sin a cos ah
;

.*. X= — X^sinacosaA)

r=o J'

thus the whole friction acts in the vertical plane ZGA. Since

G describes a horizontal circle, the force acting on it must
tend to the centre, and therefore this result might have been
anticipated.

151. We may also determine the steady motion very
simply by another process. Let (7 be the axis of the body,

01 the instantaneous axis of rotation, OZ the vertical. Then
when the motion is steady, these three must be in one vertical

plane which revolves about OZ with a uniform angular

velocity n. Let II be the angular velocity about 01, then

H cos 7(7= n. Let OB be the horizontal axis about which
gravity tends to turn the body, then OB is perpendicular to

the plare ZOC,
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Since gravity generates an angular velocity ^—^

—

- dt in

the time dt about OB, therefore by the parallelogram of an-

gular velocities, the instantaneous axis 01 has moved in the

time dt through an angle ^ dt in a plane perpendicular

to the plane ZOL Hence the angular velocity of / round Z
due to the action of the forces is

~di ~ AD. 'sinlZ'

Also by Art. 136 the angular velocity of I round C due
A— G

to the inertia of the body is —^— n, hence the angular

velocity of /round ^is

dyjr^ A-C sin 7(7

dt
~~ A ' sin IZ^

and the whole angular velocity is the sum of these two, i. e.

/ah sin a ^ ^^ A— C \ sin 10^=(—1 cot 10+—J— n) -.—

^

V ^^ A J sm IZ

_g7i. sin a. cot 10+ {A— 0) w*

An (sin a . cot 10 — cos a)

But when the motion is steady OZ, 01 and are all in

one plane. Now the angular velocity of round / is H, and
therefore its angular velocity round Z is

sin 10 n sin 10
\ = a

Hence, tan 10=

sinZO cos 10 ' sin a

\sina
n

Substituting this value of tan 10 in the first value of \, we
get

^= On — A\ cos a,
A.

the same expression as before.

13—2



196 MOTION OF A EIGID BODY.

152. The motion of a body about a fixed point under the

action of any forces may in many cases be constructed by
making the momental ellipsoid roll on some surface to be deter-

mined by the conditions of the problem. But this represent-

ation of the motion is not always a convenient one. In the

case just considered, the steady motion may be represented by
making the ellipsoid roll on the surface of a right cone whose
axis is vertical.

The ellipsoid is in this case a spheroid whose axis is OC.
Let (7 be taken as the axis of z, and let Ox be drawn to

the left of C, Then the equation to the section of the ellip-

soid by the plane COZ is

Aa^+Cz' = €'
(1).

Let X, z be the co-ordinates of the point in which the in-

stantaneous axis 01 cuts the ellipsoid, and let r be the cor-

responding radius vector, and let the angle 10 (7 = /3. Then

.4sin'^^+(7cos'^y3=^
r

tan/3=
Xsin a

,(2),
I

The equation to the tangent plane at the extremity of the

radius vector r is

A&mfi ,x+ Ccos^ ,z = -
T

and the equation to OZ^ (figure, Art. 151) is

x — z tan a

.(3),

(4).

Let 7 be the semi-angle of the cone, then 7 is the incli-

nation of OZ to the tangent plane (3)

;

Q
~2 cot^ + tan a

/. tan 7 = ^ ,

1 —
--J

cot /9 . tan a

after substituting for tan yS, we get

gli sin a
cot 7 = —

A>^^ -\-gh cos a
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153. Prob. 2. An {nfinitely thin circular disc moves on

a perfectly rough horizontal j>lane in such a manner as to pre-

serve a constant inclination a to the horizon. Find the con-

dition that the motion may he steady and the time of a small
oscillation.

Let the mass of the disc be taken as unity, let a be its

radius. Let the axis oiz be vertical, and let the axes GA, GB^
GC, drawn through G, the centre of gravity, move in the

body so that GCis normal to the plane of the disc, and that

the three axes Gz, GG, GA are all in one vertical plane.

Let be the point of the disc in contact with the plane ; X,

Y the frictions at resolved parallel and perpendicular to

the plane GGA. Let R be the reaction at normal to the

horizontal plane. Let w, v be the horizontal velocities of the

centre of gravity resolved along and perpendicular to the plane

GGA. Let the rest of the notation be the same as before.

The equations of motion about the centre of gravity will be

^&'-'^^S)-(^-^)"^'^'=« (^)'

^/^2+^^^^ + (^_ 0)ft>3(w, = -Xa sin (9-i?a cos (?,.. (2),
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^§-^- (3),

and the geometrical equations by the second part of Art. 108, are

dd

^ = ^^

|+fcos^ = <»3

(4),

(5),

.(6).

The equations for the motion of the centre of gravity are

by Art. 63,

du dyfr _
dt '"'dt-^'

df
=-g +B

(7),

(8),

(9).

and the geometrical equations are

u = a sin 6 . co„

z =a sin 6

,(10),

(11),

.(12).

To solve these, we must eliminate w, v, and z. Then since

the square of -y- may be neglected, we have

^ . d'e
^

d^jrA = a sm a -yt + aw,—y-
at ^ dt

dt

nd'dE=g + a COS 0-^

(I).
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Substituting these in (1), (2), (3) and remembering (5)

we have

where A'==A, B'=^B + a\ C'=C + a\

These equations might have been obtained by taking as

the origin of moments. To do this we must apply to every
element of the body an acceleration equal and opposite to that

of 0, The acceleration of due to the steady motion is

actfj -^ perpendicular to the plane of the disc. In taking mo-

ments this must be supposed to act at G the centre of gravity

of the disc by Art. 65. The acceleration of due to the

small oscillation may be neglected.

To find the steady motion.

We have oj^, Wg, Wg, -?^
, 6, all constants. Let co^ = n,

-^ == Xj ^ = a, then substituting in (4), (5), (6), and (11) we have

ojj = — \ sin a,

{2A + a^) (o = A\ cos a — '^ cot a,

since C=2A,

This relation must exist between the angular velocity of the

disc about its axis and the angular velocity of the horizontal

tangent, in order that the motion may be steady. The point
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of the disc in contact with the plane describes a circle on the

plane. Let r be the radius of this circle. Then since the

disc turns round once in the time —

;

.\—r. — \ = 27ra; .'. r = — —^a;
ojg A,

/. {2A \-a^)r = — Aa . cos a + ^^ cot a.

Tofind the small oscillation,

Let^ = a + 0',^=X+^,<»3 = « + a,; where e',^',

6)3' are small quantities whose squares and higher powers are

to be neglected. Substituting for w^, w^, -^, from (4), (5),

(6), the first of equations (II) becomes

^sina —S-+ 2^ (cosa.X-w) -^ = (13).

The third becomes

.-. (2^ + a') (a)3-w)=a"sinaX(<9-a) (14).

The second becomes

— -4 sin ^ cos 6 ( -^) = — ^« cos 0,

which reduces to

{A + a')^ + Le'-M^ma.^ = (15),
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where

X = — A\^ cos 2a + {2A + a^) n\ cos a— go. sin a,

if= 2^ cos a . \ - (2^ + c^) n.

Integrating (13) and substituting in (15), we have

(^ + a')-^+{i: + 2if(cosa.\-w))l9' = 0, ...(16).

The constant introduced by integrating (13) would give

rise to a constant term in the value of 0' obtained by inte-

grating (16). But all the constant part of 6 has been supposed
to be included in its mean value 6 = a. Hence this constant

mest be omitted.

Therefore if T be the titne of a small oscillation

(^-^ (J. + «^ = (1 + 2 cos'a) AX^ - 2n\ cos a (3^ + a'),

+ 2n^ {2A + a^-ga sin a.

The frictions at the point may be found by equations

(7) to (12). .

EXAMPLES.

Section I.

1. If 0)^, &)j,, «g be the angular velocities about the co-

ordinate axes, find the locus of those particles whose velocity

is ao)^,

2. The locus of points in a body moving about a fixed

point, which at any proposed instant have the same velocity,

IS a circular cylinder.

3. A body has an angular velocity co about the axis

X- a y — ^ g —

7

I " m ~ n ^
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where r + m^-\-n^ = l. The motion is equivalent to rotations

Icoj 7ncOj no) about the co-ordinate axes, and translations

{my — np) co, {na — ly) w, {l^ — ma) o),

in direction of them.

4. A circular disc revolves with a uniform angular

velocity to about an axis through its centre perpendicular to

its plane, while its centre describes a circle of radius a with
uniform angular velocity fl about a point in the plane of the

disc. Prove that the motion at any instant is exhibited by
a single rotation, and the locus of the instantaneous axis is

a cylinder of radius ^ . Explain the result when «, 12

are equal and contrary in direction.

5. A body has equal angular velocities about two axes
which neither meet nor are parallel. Prove that the central

axis of the motion is equally inclined to each of the axes.

6. If, in a rigid body moving in any manner about a
fixed point, a series of points be taken along any straight line

in the body, and through these points straight lines be
drawn in the direction of the instantaneous motion of the

points, prove that the locus of these straight lines is an hyper-
bolic paraboloid.

7. In the motion of a geometrical figure there exist an-

gular velocities inversely proportional to /§ — 7, 7 — a, a — /8

round three lines forming three edges of a cube which do not

meet, symmetrically chosen with respect to the axes of co-

ordinates drawn parallel to them through the centre of the

cube. Prove that the figure rotates about the line

{^-y)x+{y-a)a={y-a)y-{^-y)a={a-^)z,

where 2a = the edge of the cube.

I
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Section II.

8. A body tamihg about a fixed point of it is acted on
by forces which always tend to produce rotation about an
axis at right angles to the instantaneous axis ; show that the

angular velocity cannot be uniform unless

A ^ G ^ B -^^

Ay B, being the principal moments of inertia with respect

to the fixed point.

9. If forces act on a homogeneous spheroid tending

always to produce rotation about an axis (a) in the plane of

the equator, the instantaneous axis will describe a circular

cone in the body about its polar axis ; but the angular velo-

city about the instantaneous axis will not be uniform unless

the axis a be always at right angles to the instantaneous

axis.

10. If two of the principal moments of inertia be equal

and the body begin to rotate about an axis perpendicular to

that of unequal moment, under the action of a couple varying

as the cosecant of the angle which the instantaneous axis

makes with the axis of unequal moment and in a plane per-

pendicular to that axis, determine the position of the instan-

taneous axis in the body in terms of the time.

11. If a rough plane inclined at an angle a to the hori-

zon be made to revolve with uniform angular velocity o),

about a normal Oz and a sphere be placed upon it, show that

the path of its centre will be a prolate, a common, or a cur-

tate cycloid according as the point at which the sphere is

initially placed is without, upon, or within the circle, whose
equation is

J _ S5g sm a

the axis Oy being horizontal

a^ 4- ^ys _ ^'^y »^" « ^
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Show also that the path will be a horizontal straight

line, if the sphere be initially placed at the centre of the

circle.

12. A right cone rolls upon the inner surface of another

right cone, having the same vertex, with a uniform angular

velocity co, find the couple impressed upon the rolling cone
necessary to produce such motion.

13. A hollow cone, the internal surface of which is per-

fectly rough, is fixed in a position in which its axis is inclined

at an angle (a) to the vertical, and a solid cone of smaller

vertical angle is placed inside, its vertex coinciding with the

vertex of the fixed cone, and allowed to oscillate : show that

the length of the simple isochronous pendulum is

4^ sin()g-7)

Sh sin a sin^ 7

'

2/8 and 27 being the vertical angles, h the height of the

moving cone, and k its radius of gyration about a generating

line.

14. A segment of a solid ofrevolution bounded by a plane

perpendicular to its axis, rests with its plane surface in con-

tact with a perfectly rough horizontal plane, which is revolving

with a varying angular velocity co, about a vertical axis, show
that if A = height of the centre of gravity of the solid above

the plane, c the distance of its axis from the axis of rotation,

and r the radius of the base, the solid will upset, if

^'V "' +© ^^r.

15. A segment of a surface of revolution cut off by a

plane perpendicular to the axis is placed with its curved

surface in contact with a smooth horizontal plane. Supposing
a rotation n to be communicated to it about its axis of figure

when inclined at an angle a to the vertical, prove that



EXAMPLES. 205

Cn /cos a — cos 6\^
+ ©^=^^(^-^)'

where 6 is the inclination of the axis of figure to the vertical

;

C is the moment of inertia about the axis ; z is the altitude

of the centre of gravity at the time t and is a known function

of 0, and h is the initial value of z.

16. A hoop AGBF revolves about AB its diameter as

a fixed vertical axis. GF is a horizontal diameter of the

same circle which is without mass and which is rigidly con-

nected to the circle; DGh another hoop having 6^i^ passing

through its centre and which can turn freely about GF,
If n, n', ft), G)', be the greatest and least angular velocities

about AB, GF respectively, prove that

17. A circular disc has a rod GO rigidly fixed to it,

passing through its centre G perpendicular to its ])lane.

The point is fastened to a point about which GO can
freely turn. The whole system is under the action of

gravity. Supposing the initial position of CO to be very
nearly horizontal and the disc to be set in rotation about GO,
it is required to determine the motion.

18. If a homogeneous sphere roll on a perfectly rough

plane under the action of any forces whatever, of which the

resultant passes through the centre of the sphere, the motion

of the centre of gravity is the same as if the plane were

smooth and all the forces were reduced in a certain constant

ratio.

Prove also that the plane is the only surface which pos-

sesses this property.

19. Prove that a billiard ball, being considered as a
sphere partly rolling and partly sliding on a horizontal plane,

describes a parabola, except in the particular case wlien it

moves in a right line.
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20. A sphere rolls along the inner surface of a fixed

circular cylinder with its axis horizontal, it is required to

determine the motion of the sphere, the surface of the cylinder

being perfectly rough, and the motion not in a plane per-

pendicular to the axis of the cylinder. Also find the least

velocity at the lowest point which will make the sphere go

completely round, without leaving the surface of the cy-

linder.

21. A uniform sphere is placed in contact with the ex-

terior surface of a perfectly rough cone. Its centre is acted

on by a force, the direction of which always meets the axis

of the cone at right angles, and the intensity of which varies

inversely as the cube of the distance from that axis. Prove
that, if the sphere be properly started, its path upon the cone

will meet each generating line in the same angle.

Section III.

22. If a right circular cone whose altitude a is double
the radius of its base turn about its centre of gravity as a
fixed point, and be originally set in motion about an axis

inclined at an angle a to the axis of figure, the vertex of

3
the cone will describe a circle whose radius is - a sin a.

4

23. A circular plate revolves about its centre of gravity

at a fixed point. If an angular velocity w were originally

impressed on it about an axis making an angle a with its

plane, a normal to the plane of the disc will make a revolution

m space m time — , —

.

6)Vl + 3sm'^a

24. If a body be turning about a fixed point under the

action of no forces, and if

(i-i)taB'.^=l-i
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at any instant when A is finite, then
<f)

will be invariable and
t/t will increase imiformlj. Find the values of co^, w^, co^ in
this case.

25. If a solid of revolution be moving about its centre
of gravity fixed, show that the plane containing the axis of
figure and the instantaneous axis revolves uniformly about a
line in itself and that the axes cannot be equally inclined to
this line unless G>2A, and in that case the inclination

I _ A .

equals - cos~^ ^^_ . , G being the moment of inertia about

the axis of figure, and A that about a line perpendicular to it.

^
26. If ft)j, ft>2' ®s ^® t^6 angular velocities about the

principal axes at any fixed point, prove that when all the
impressed forces pass through the fixed point

A {co^^ - V) ^ B {co^ - K) _ C K- - V)
B-C G-A ~ A-B '

27. A right cone the base of which is an ellipse is sup-

ported at G the centre of gravity, and has a motion com-
municated to it about an axis through G perpendicular to

the line joining G, and the extremity B of the axis minor of

the base, and in the plane through B and the axis of the

cone. Determine the position of the invariable plane.

Result, The normal to the invariable plane lies in the

plane passing through the axis of the cone and the axis of

instantaneous rotation, and makes an ansjle tan~^ 7- . -^—75- .

28. A body is revolving about its principal axis of mean
moment, and an additional angular velocity about its axis of

greatest or least moment is impressed upon it : show that the

instantaneous axis will describe within the body a cone of

which the internal axis is the axis about which the additional

angular velocity is impressed.

29. A lamina of any form rotating with an angular
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velocity w about an axis through its centre of gravity per-

pendicular to its plane has an angular velocity

0)
\A-B.

impressed upon it about its principal axis of least moment,

A and B being its moments of inertia about the principal

axes of mean and least moment : show that its angular veloci-

ties about the principal axes at any time t are

2« (A^B\\ €-*-€
-^ CO
BJ e"' + €

lot y

and
A + B\k 2a)(A+.

U- BJ e-' + e"

and that it will ultimately revolve about its axis of mean
moment,

30. A rigid body not acted on by any force is in motion
about its centre of gravity: prove that if the instantaneous

axis be at any moment situated in the plane of contact of

either of the right circular cylinders described about the

central ellipsoid, it will be so throughout the motion.

If a, h, c be the semi-axes of the central ellipsoid, arranged

in descending order of magnitude, e^, e^, e^ the eccentricities of

its principal sections, D,^, Oj, fl^ the initial component angular

velocities of the body about its principal axes, prove that the

condition that the instantaneous axis should be situated in

the plane above described is

Prove also that if the preceding condition be satisfied,

the position of the instantaneous axis with respect to the
principal axes of the body, at any time tj will be determined
by the equations

1
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where 72 =—2+-T2+-r and Z= -^-ri-.
A a ¥ c k

31. A body is moving about a fixed point under tlie

action of no forces, and a small particle, mass m, is tied to a

given point on its surface by a very short string, and moves
with the body ; determine the tension of the string, the mass
of the particle being neglected in comparison of that of the

body.

32. If a body move about a fixed point under the action

of no forces, and if the instantaneous axis describe the sepa-

rating polhode, prove that there is a line fixed in the body
which always lies in a certain plane fixed in space.

33. The "measure of curvature" of an ellipsoid along
any polhode is constant.

Sections IV. and V.

34. A uniform solid of revolution, of which the mass
is M, and the principal moments of inertia about its axis

of figure, and about any other principal axis through its centre

of gravity, are respectively (7 and A, floats in unstable equi-

librium, with its axis vertical, in a fluid of specific gravity

greater than its own, the depth of the metacentre below the

centre of gravity being c. Prove that the relative equilibrium

of the solid will be rendered stable if it be made to rotate

uniformly about its axis, with an angular velocity greater

than

c

35. A perfectly rough sphere is placed on another per-

fectly rough fixed sphere near the highest point. And the

upper sphere has an angular rotation to about its diameter

E. D. 14
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through the point of contact
;
prove that its equilibrium will

be stable if ai^ > '

.. where a is the radius of the fixed .
^

i
sphere, and h the radius of the moving sphere. 1

36. An ellipsoid is placed with one of its vertices in

contact with a smooth horizontal plane. What angular velo-
city of rotation must it have about the vertical axis in order
that the equilibrium may be stable ?

Result. Let a, h, c be the semi-axes, c the vertical axis,

then the angular velocity must be greater than

V c

37. A uniform rod, moveable about one extremity, moves
in such a manner as to make always nearly the same angle a
with the vertical j show that the time of a small oscillation

is

cos a

a being the length of the rod.

/2^ c

38. A hemisphere of radius a is placed on a perfectly

rough plane with its base inclined at an angle a to the hori-

zon, and is set in rotation about its axis of figure with an
angular velocity n. Prove that if the motion be steady, the

axis of figure will revolve round the vertical with an angular

velocity X given by

V [A cos a + (A cos a — a) {h — a cos a)} + Cn\ — — gk^

except when a = : where h is the distance of the centre of

gravity from the centre, and Q is the moment of inertia about

the axis of figure. Prove also that the radius of the circle

described on the horizontal plane by the point of contact is

a sin a . cos a. Find also the time of a small oscillation,

39. A rigid body is attached to a fixed point by a

weightless string, length Z, which is connected with the body
by a socket (permitting the body to rotate freely without

(
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twisting the string) at a point on its surface where an axis

through its centre of gravity, about which the radius of gyra-

tion is a maximum or minimum = h, meets it. The body is

set rotating with an angular velocity w about such axis

placed vertically ; the string, which is tight, forms an angle a
with the vertical, and is then let go ; show that it will ulti-

mately revolve with the uniform angular velocity

/ 2lg sin'^a

1?
-^+

..

14—2



CHAPTEE VI.

MOTION OF A FLEXIBLE BODY.

The general term "Flexible Body" includes many other

Lodies besides strings. The motions treated of in these cases

are generally small oscillations, and their discussion will

properly form a subject by itself. The reader is therefore

referred to any treatise on Sound and to the memoirs of

Poisson, Cauchy and others on the subject. In the present

chapter only the motion of a perfectly flexible string will be
considered.

154. Prop. To determine the general equations ofmotion

ofa string under the action of any forces.

First. Let the string he inextensible.

Let Ox, Oy, Oz, be any axes fixed in space. Let Xmds,
Ymds, Zmds, be the impressed forces that act on any element

ds of the string whose mass is mds. Let u, v, w, be the

resolved parts of the velocities of this element parallel to the

axes. Then, by D'Alembert's principle, the element ds of the

string is in equilibrium under the action of the forces

inds (^4:)'

and the tensions at its two ends.

Let T be the tension at the point (x, y, z), then T
rp^ ,dz

dx

ds

T-j- are its resolved parts parallel to the axes. The
ds
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resolved parts of the tensions at the other end of the element

will be

^S-i(4>.
and two similar quantities with y and z written for x.

Hence the equations of motion are

-n{'tY-\

-t=i[^i>-^ >•

-S=.i(4>»^

(1).

In these equations the variables s and t are independent.

For any the same element of the string, s is always constant,

and its path is traced out by variation of t. On the other

hand, the curve in which the string hangs at any proposed

time is given by variation of s, t being constant. In this

investigation s is measured from any arbitrary point, fixed

in the string, to the element under consideration.

To find the geometrical equations. We have

Differentiating this with respect to f, we get

dx du dy dv dz dw _
ds ds ds ds ds ds

(a).

The equations (1) and (2) are sufficient to determine a;, y,

s, and T, in terms of s and t.

155. These equations may be put under another form.

Let 0, >|r, x^ be the angles made by the tangent at a;, y, 2,.
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with the axes of co-ordinates. Then tlie equations (1) be-
come

du dm

with similar equations for v and w.

(3),

dx
To find the geometrical equations, differentiate cos ^ =^

with respect to t

;

, d<f> du
(4).

Similarly, by differentiating cos "^—i- and cos ;^ = -v-

,

we get two other similar equations for -^ and y^. Taking
these six equations in conjunction with the following

cos'^ <^ + cos'' -^Ir + cos^ ;)^
= 1 (5),

we have seven equations to determine w, r, tc, 0, a/t, y^ and T.

If the motion takes place in one plane, these reduce to

the four following equations

:

^^ = ^(rsind))+mr
dt ds ^'

, d<i) du

, d<l) dv

(6),

(7).

The arbitrary constants and functions which enter into

the solutions of these equations must be determined from the

peculiar circumstances of each problem.
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156. Secondly. Let the string he elastic.

The dynamical equations will be the same as before,

but the geometrical equations will depend on the elasticity

of the string. Let s be the unstretched length of the arc s.

Then the independent variables are s and t. We have
now

Differentiating this with respect to t, we get

dx du dy dv dz dw _ds d (ds\

ds ds ds ds ds ds ds ' dt \ds)
*

But if X be the elasticity of the string, we have

ds X
'

Hence, substituting, we get

dx du dy dv dz dw _ f
T\ 1 dT

ds ds ds ds' d^ ds \ Xj'Xdt'

These two equations together with the dynamical equa-
tions (1) will suffice for the determination of w, r, w^ 5, and
T in terms of s and t.

If we wisb to use the equations of motion in the forms

(3) or (6), the corresponding geometrical equations (4) or (7)

must be modified.

We have

dxdx ,ds ,
A

, T\
^,=cos</,^, = cos<^(^l+-j.

Hence differentiating, we have

du . . d(f> 1 d ,rrt ,\

. , . ., .
J.

dv J dw
with similar expressions lor ^, and -p-

.
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157. When the motion of the string takes place in one
plane, it is often convenient to resolve the velocities along
the tangent and normal to the curve.

Let u\ V, be the resolved parts of the velocity of the
element ds along the tangent and normal to the curve at that

element. Let ^ be the angle the tangent to the element ds
makes with the axis of x. Then by Chap. IV. Art. 63, the

equations of motion are

du , dd) ^^, dT

dv' rdd> ^^, T ]'

at at mp
J

The geometrical equations may be obtained as follows.

We have

u = u' cos (j) — v' sin 0.

Differentiating with respect to s, we have by Art. 155,

d6 , , (du v\ , (dv v!\ . .

ds
where p is the radius of curvature, and is equal to -tt .

Since the axis of x is arbitrary in position, take it so that

the tangent during its motion is parallel to it at the instant

under consideration; then ^ = and we have

^_du V

ds p
'

Similarly, by taking the axis of x parallel to the normal,

c?<^ _ dv' u

dt ds p
'

These four equations are sufficient to determine u, v\
<f>

and T in tenps of s and t.

If the string be extensible, we have, by differentiating,

w = m' cos — v sin ^,
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with respect to s\ and bj Art. 156,

dcj) \ d .^ . (du
- '"^ *I + xJt ^^'°' -^^ =W -

p d^')
"^^ "^

/dv' u' ds\ . ,

whence, by the same reasoning as before, the geometrical

equations are

lJr_^'__v'/ TN 1

\ dt ds p \ \ J I

dt'V'^ \)~ds''^ p\ "^ \

y

158. Def. When the motion of a string is such that the

cm*ve which it forms in space is always equal, similar, and
similarly situated to that which it formed in its initial posi-

tion, that motion may be called steady.

159. Prop. To investigate the steady motion of an inex-

teiisible string.

It is obvious that every element of the string is ani-

mated with two velocities, one due to the motion of the

curve in space, and the other to the motion of the string

along the curve which it forms in space. Let a and h be

the resolved parts along the axes of the velocity of the curve

at the time t, and let c be the velocity of the string along

its curve.

Then, following the usual notation, we have

w = a + c . cos <^)

.
^\ (1).

v = o -\-c,s>m<f>)

Now a, J, c are functions of t only, hence

du . , d<b
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du . ,d<f>= - sm <^ ^ ;

ds

d<l> _ d<l>

dt~ ds
(2),

!
Substituting tlie values of a and h in the equations of

motion, Art. 154, we get

+ -yr cos <^ csin*S->M~*)da dc

di'^di

db dc . ,
,

,d(j) ^ ^/^„-„jL
^ +37; Sm(/>+C COS^;^ =r+ ;^(- SlU (^

c?^ c?e <^ \m

d4>
Substituting for j^, these equations reduce to

'^«=(X-|cos,)+|{(^-cjcos,}

db

dt~[
sin </>

'^ds\[m'
sin

^/

(3).

The form of the curve is to be independent of t ; hence, on

eliminating T, the resulting equation must not contain t. This

will not generally be the case unless -^ » 3" * ^ ^^^ ^^^ ^^^"

stants. In any case their values will be determined by the

known circumstances of the Problem. The above equations

must then be solved, s being supposed to be the only inde-

pendent variable, and t being constant.

160. If the string move uniformly in space, and the

elements of the string glide uniformly along the string,

-y- = 0, -:r = 0, -7- = 0. It will then follow from the above
dt ' dt dt

equations, that the form of the string will be the same as if

it was at rest, but the tension will exceed the stationary

tension by 'mc^*
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161. Ex. Let an electric cable he deposited at the bottom

of a sea of uniform depth from a ship moving with uniform
velocity in a straight line, and let the cable be delivered with a
velocity c equal to that of the ship. Find the equation to the

curve in which the string hangs.

The motion may be considered steady, and the form of the

curve of the string will be always the same.

If the friction of the water on the string be neglected,

gravity diminished by the buoyancy of the water will be

the only force acting on the string. Hence the form of the

travelling curve will be the common catenary, and the ten-

sion at any point will exceed the tension in the catenary by

the weight of a length of string equal to — .

if

Next let the friction of the water on any element of the

cable be supposed to vary as the velocity of the element, and
to act in a direction opposite to the direction of motion of the

element*. Let fi be the coefficient of friction.

Let the axis of x be horizontal, and let x be the abscissa of

any point of the cable measured from the place where the

cable touches the ground, in the direction of the ship's motion.

Also let s be the length of the curve measured from the same
point. Then ic = a;' + ct, and s = s \- ct.

Following the same notation as before, we have

X = — fiu, Y — — g — fjLV.

But u = c — c cos
(f>,

V = — c sin cj).

Hence the equations (3) become

= -//^+/xccos<^ + ^|(^--c^jcos</)|
I

= -y+/^sin^ + |{g-c^)sin</,l^

di/ dx
To integrate these put sin <j) =~ , cos <^ = -7- .

* Each element of the string has a motion both along the cable and trans-

versely to it. The coeflacients of these frictions are probably not the same, but

they have been taken equal in the above investigation.
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Hence,

g'A = — fics 4- IJ'CX + ( c^ ) cos </>

g'B = - gs + ticy-\- m sin
(f>

(1),

where A and B are two arbitrary constants.

At the point where the cable meets the ground, we must
have either T= or </> = 0. For if be not zero, the tangents

at the extremities of an infinitely small portion of the string

make a finite angle with each other. Then, if T be not zero,

resolving the tensions at the two ends in any direction, we
have an infinitely small mass acted on by a finite force. Hence
the element will in that case alter its position with an infinite

velocity. First, let us suppose that <^ = 0. Also at the same
point, y = and s — 0. Hence B= — ct.

Putting —, = e, we get by division

dy s — ey

dx
(2).A — ex-\- es

'

This is the differential equation to the curve in which the

cable hangs.

To solve this equation*, find s in terms of the other

quantities,

. dy ,
dy

^

dx dx

1-e
dx

Differentiating, we have

V 1 +
^^.(A-ex' + e'ff)dy'y_ dx

* Phil. Mag. July 1858. The Astronomer Eoyal on tlie Mechanical Con-

ditions of the deposit of a Submarine Cable.
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Put p for -~ where convenient, and put v hr A—ex+e'i/;

the equation then hecomes

1 dv dx

V dx (1 _ ep) Virp
'

in which the variables are separated, and the forms are well

known. The equation can be integrated a second time, but
the result is very long. The arbitrary constant A may have
any value, depending on the length of the cable hanging from
the ship at the time t = 0.

The curve in its lower part resembles a circular arc or the

lower part of a common catenary. But in its upper part the

curve does not tend to become vertical, but tends to approach
an asymptote making an angle cot"^e with the horizon. The
asymptote does not pass through the place of touching the

/i

ground but below it, its smallest distance being —7= , and

it also passes below the ship.

If the conditions of the question be such that the tension

at the lowest point of the cable is equal to nothing, the tan-

gent to the curve at that point will not necessarily be hori-

zontal. Let \ be the angle this tangent makes with the

liorizon. Referring to equations (I) we have when

x' = 0, 7/ = 0, s'=0, r=0, and<^ = X.

Hence A =
-, cos X, B = ^ sin X — cL

9 9

The differential equation to the curve will now become

(3),
dy_

&

4
sin

cos

X+s' -ey

dx'
-ex
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which can be integrated in the same manner as before. One
case deserves notice ; viz. when e = cot \. The equation is

then evidently satisfied by 3/ = - x. The two constants in the

integral of (3) are to be determined by the condition that when

aj' = Oj ?^ = Oj then -^, — tan X. Both these conditions are satis-

fied by the relation y= -a?'. Hence this is the required in-

tegral. The form of the cable is therefore a straight line,

inclined to the horizon at an angle \ = cot"^e ; and the tension

may be found from the formula

1 + cos X

162. Prop. An inelastic string is suspended from two

fixed points under the action of gravity so that it hangs in

the form of a catenary, the parameter of which is c. Any
small disturbance being given to the string in its own plane,

it is required to determine the general equation to the small

bscillations about the position of rest.

Let a be the angle the tangent at any point makes with
the horizon when the string is at rest, and a + ^ the

angle made by the tangent at the same point of the string at

the time t.

Let w, V be the velocities of any element ds of the string

resolved along the tangent and normal, and T' the tension of

the element. Let the mass of a unit of length be taken as

the unit. Then the general equations of motion of the string

are by Art. 157

du d^ • / . ^x .
clT'

= dv
,

d^,
/ . .N .

T'd{a +
<t>)
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Let the directrix of the catenary be taken as the axis of a?,

and let s be measured from that point of the string which
coincides with the lowest point of the catenary when the

string is in the position of equilibrium. Then the tension

when the string is at rest is gj/, which is equal to
cos a

Letr = -^+T: Alsotana = -;
cos a c

da cos''

a

c
and

dr
ds

cos''

a

dT
ds~ c do.

dT
Substituting these values of T' and -^ , and remembering

that in small oscillations we may neglect the squares and
products of the small quantities w, v, <j), we get

du , ,^ = -^cosa.^ +
cos'g dT

c doL
' w,

dv . , ,
d6

^

(2).

We have also by Art. 157 the two geometrical equations,

du V _
ds p

dv u _d<f)

ds p dt
^

where - = -y- + -^ is the reciprocal of the radius of curvature.
p as as ^

Changing the independent variable to a and neglecting

the squares of small quantities, these reduce to

du
V —

d\i

da'
+ u

da,

c d^
cos'^a dt

(3).
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For tlie sake of brevity let us put u, v', (j)" for -j- ,
-j-

,
72 J Cit at

-j^ respectively.

In order to solve these equations, we must eliminate T
from the equations (1) and (2). Differentiating the second

equation, we get

6?V ,
d^ cos^ a dT 2 cos a sin a ^

Subtracting equation (1) from this result, we have

JV , fd'^6
. ^ ,\ 2 cos a sin a ^^^-«=^cos«(^ + 2.^j ^ T.

Eliminating T from this by means of (2) , we get

cos a f -y-;^ + w 1 4- 2 (sm a -^ u cos a,) = g cos a -~^

+ 2^ sin a cosa-3^ + 8^<^ (4).

But by (3)

d^u , c ,„

rf^+^^c-^s^"^ (5);

du' , r sin a . ,, ^
.*. sm a -J w cos a = c —^ 6 da^

act. J cos a ^ \

substituting these in (4), we get

co^* +^'J^^a*
^a=^(cosa^ + 2smacosa^^+2c^).

Differentiating again, we have

c #"
.
3csina ^ /cZ^i^ cZ<i\
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3 ^4^ n 2 • J."
COS a -f- + 3 cos a sin a* , ,3 , j,.

.
da

L. ^^ r^
I 4^^V

'
*

coTo c Vc?a^ daj '

integrating both sides, we have

cos' a c [dar ^ "^
^

')

Returning to the original notation, this may be written

d^'

de?=!-'« P+*^+-^4 («)

This is the general equation to determine the small oscilla-

tions of a slack string.

163. The tension of the string will be given by equation

(2), but another expression may also be found as follows.

Differentiating (2) and adding the result to (1), we
obviously get by (5),

c d^ d^6 ^ cos'' a dT T d cos'' a

cos' a dt^ ^ da-" c da c da '

or cos
''da

^"""--^
2 Us' a df c da")

..coaa.T=fj{i<t>+f{t)}da;

164. If the string be so tight that we may neglect the

squares of a, we have, since tan a = - , s = ca and therefore
c

^- = c. Hence
da

d<l> dcj> , d'(l) ,d'^
-^ = c~ and -7-T = c"-j^.
da ds do: ds

K. D. 15
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The equation (6) now reduces to

To simplify the equation let ^ = i^(^) +</>' and let F{t)

be such that

then we have

Since c is very great, the first term on the right-hand side

is much more important than the second.

1^5. An infinite string is suspended in equilibrium in

theform of a catenary. A small disturbance being given to it,

it is required to determine the motion of the lower ])art of th^

string.

Taking the same notation as before, the equation of mo-^

tion is

f=f-«'«j2 + ^^-^/W} (6).

The integration of this equation will introduce two arbi-

trary functions into the value of ^. The forms of these

functions are determined by the initial values of ^ and -? •

The form of the function / {t) is determined by the condition

that when a= -
, <^ = 0. The geometrical meaning of f{t)

may be found by referring to the last article. It is there

shown that if we put ^=F
{f)

4-^', the function /(^) may be
eliminated altogether provided a be small. Now F{f) is the

same for all the elements of the string, being a function of t

only. Hence near the lower part of the string, where a is

small, the equation (j)=F (t) is equivalent to a small rotatory

motion of the curve as a whole, its form being unchanged.
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The values of u and v may be found from equations (3) in

page 223,

du

da

d^u c d(j>
'

<;=?+"=
J

The integi'ation of these equations will introduce two
arbitrary functions of t, and we shall have

. , , . ,

,

f terms dependinsr on

, ,

.

, . . f terms dependino- on
« = V^ («) cos « - X W sm a +

I ^^^ J^^ ^^
-

These arbitrary functions are evidently equivalent only to

small motions of translation xi^) ^^^ "^(0 parallel to x and ^
respectively, the curve moving as a whole, its form being
unchanged. By considering the way in which the string is

supported, the values of u and v will be known throughout

the motion at some points of the curve. This will enable us

to determine the forms of %(^) and '^{t).

We shall assume that the string never departs far from its

position of rest. In determining the motion of the lower part

of the string we may put cos^ a= 1, and we may therefore use

the equation (7) of the last article,

d%' d%' 40 ,, ,^.

where </) = <^' + i^(^).

To obtain the integral of this equation, assume

(p' = L sin {ms + nt)
;

substituting in the equation, we get

V^^-5n = ± m
V " cm

15—2
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Let this be written for brevity

71 = + ma.

Then
(f)'
= L sin m{s + at)

{f>'
= ilifsin m{s— at)

at) 1

at) )

are both integrals of the differential equation. Similarly

<i>
= L' cos m {s + at)

]

cj}' = M' cos m {s — at)

)

are also integrals, where L, M, L\ M', m may have any
values. The complete value of ^ will therefore be a series

of terms whose general form is the sum of these four partial

integrals, i. e.

^ — L sin m{s-\- at) + U cos w (5 + ai)

+ 3fsin m{s — at) + M' cos m{s — at)
;

. l_d£ ^ ,^ . ^,, ^,„^ ^._ „^ ,_ . ^,,
^ .... (8).

*

' a dt
= i>?i cos m (5 + a^) — i'm sin m {s + a^)

— Mm cos m{s— at) + M'm sin m{s — at) )

To determine the constants Z, ilf, Z', if' we must have

recourse to the initial values of dl and -~ . Let these initial
at

values be expanded in a series of terms of the form

<j)' = A sin ms + A' cos ms
]

I

!#'
7? • ,7?'

f- = Bsm.ms + B cos ?7Z5

(9),

Then A, A', B, B are known quantities. See Todhun-
ter's Integral Calculus^ Chap. xiii.

These values of ^ and -~ must agree with those given

by equations (8) when ^ = 0. Taking only the general term
of each, we get
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L-\-M=A
\

7?'

Hence L = \A+ -—-
^ 2m

^ 2m J

with similar expressions for L' and M\ By substituting

these in equations (8) we get the general form of <^'.

To interpret these expressions, take any term in the ex-

pression for <j>'j viz.

^' = L sin m{s ± at),

where a = A/gc ^

.

V cmf

This is known to be the expression for the motion of a

wave whose length is

m
and whose velocity of propagation is

Since a is different for different values of \, it appears

that waves of different lengths travel with slightly different

velocities.

If the initial value of </>' contains any term A sin ttis in

which \— — is equal to or greater than ctt, then the general

expression will contain a similar term. The value of a then

becomes imaginary, and the form of that part of the integral

must be changed.

Put a = h'J~l, then

(jy' — L sin m{s + ht V— 1)

= L {sin ms cos (mht V- 1) + cos ms sin {mbt V"-!)}

;
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writing for sin [mht^J^^) and cos {inhf^—l) their exponential

values, the expression takes the form

^' = {Le"^'+ Me-^) sin ms

+ (Z'e"*''+ 3/'€-"") cos ms,

where L, M, L\ M' are different constants from what they

were before. Unless X = 0, L' = 0, the value of (j)' will soon

cease to he small, and the previous investigation will not

apply.

S 9
If there be a term ^ sin 2 - + 5 cos 2- in the initial value

c c

of </)', then m = 2 and the quantity a in the corresponding

term of the general expression for <\>' vanishes. The gene-

ral expression (8) then becomes incomplete, for the terms

L sin m {s + at) and J/sin m [s— at) join into one, and we
have no longer the proper number of arbitrary constants.

This indicates a change in the form of <^. Let us assume

= X sin 2a -{- Jfcos 2a + N,

where L, M, N are some unknown functions of t. Substi-

tuting in the equations (6), which hold throughout the whole
length of the string, we have

-^ sm 2a + -^^ cos 2a + -^ =
I

cos^ a {4A +f{t)].

But since Z, M, iVand/(^) do not contain a;

d'L ^ d'M ^ d'JSr ^ .^x ^,^ ^

Hence the new term in the expression for <}> is

^ = (a + ht) sin 2a 4- {a + h't) cos 2a + a" + h"L

The values of the arbitrary constants a, h, a, V are to

be found from the initial values of ^ and -^ .

rrr

Also since ^ = when a = - we must have

a" = a\ h" = h\

I
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Unless Z> = 0, h' = 0, the motion soon ceases to be small,

and the preceding investigation does not apply.

If the initial value of -~ is zero, then h = and h' = 0,

and we have

<i = a sin 2a + a (1 + cos 2a).

Since this expression does not contain t, it appears that

the parts of the string are at rest relatively to each other.

This might have been anticipated, for the term a sin 2a
coiTCsponds to a small change in the parameter of the cate-

nary, so that the s'tring is still in the form of a catenary

though not the same catenary as before, for if

tan a = -
, and tan (a + 6) = •

,

c
^

c + y
where s is measured from the lowest point of the catenary

and where 7 is the small change, then we have by Taylor's

theorem

ot 6 = — ~. Bin 2a.^ 2c

The term a (1 4- cos 2a) corresponds to a slip of the string

along its length, so that the curve is still in the form of

the sa7ne catenary as before. For if

tan a = -
, and tan (a + <^)

= -'

,

c c

where 7 is the slip, we have

cos a ^ c

.-. </> = ^ . (1 + cos 2a).

166. A finite string of length 2/ is fastened at two points

in the same horizontal line, whose distance apart is nearly

equal to 2l. Find the small oscillations of the string.
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Using the same notation as before, let

<j)' = L sin {ms + nt)

be any term in tbe expression for <^', where s is measured from

the middle point of the string. The corresponding motion of

any element of the string may be found by equations (3) in

page 227. Since the string is to be nearly horizontal, a is

small and we may put cos'^ a = 1 . Hence the equations

become
_ du
~~
da

d^u
, _ d<j)

da^ dt

Integrating these equations we get since 5 = ca very
nearly,

S S TtcTj
u = 'f[t)Bm--\-x (0 cos - + _ 2

cos {ms + nt)+ c F' {pA

, , V s ... s mnc^L , .
\

^ = Y (0 ^^^~. ~~ Xw sm—
2 cos [ms + nt) J

Since the extremities of the string are fastened to two
fixed points, both u and v must vanish when s = ±1.

Hence, putting s = + Z in the first equation, and sub-
tracting one result from the other, we get

gijr (^) .sin- + -
-„ .sinmZ.cosn^ = (\0),

^ ^

'

c l — m ^ '

Putting s = + Z in the second equation, and adding the
results, we get

« I /.N ? 2mcL ,
, ^

2A/r (^)cos- +- 2. cos m. cos w^ = (11).^ ^ ^ c l—m ^ ^

Hence, eliminating a/t (^) between equations (10) and (11),

cos - . sm ml — mc sm - cos ml = 0,
c c

'

or tan ml = mc, tan - = ml nearly,

since c is very great.
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This equation, when solved, will give the type of the

possible vibrations of the string.

Hence ^ will consist of a series of terms of the form

(j>=L sin {rns -k-nt) ( 1)

,

where n^±msjgc--^^ (2),

and tanm? = wZ (3).

If the initial values of <^ are such as present a term in

which the coeflScient of s does not satisfy the equation (3),

the motion will not be steady. Suppose for example a small

disturbance was given to any small part of the string, it will

travel along the string, generally in both directions ; on
reaching either fixed end it will originate a new reflected

disturbance, which will travel back and be again reflected

at the other end, and so on. Thus there will be discontinuity

in the expression for <^. See Poisson's Mecanique^ Art. 485.

167. Prop. A string is in equilibrium in any curve

m one plane, under the action of any forces. Supposing the

string to he cut at any proposed point, to determine the ten-

sion at any other point when the string isJust beginning to move.

Let Fds, Qds be the resolved parts of the forces along the

tangent and normal to any element ds.

Let w, V be the velocities of the element along the tan-

gent and normal. Then the equations of motion are by Art.

157

dt "" dt
-^+

ds
^^^'

dv d<f> ^ T

where T is the tension, p the radius of curvature, and <j) the

angle the tangent makes with any fixed straight line. The
geometrical equations are

S-r« (^)-

dv u_d^ / . X

ds'^'^'di^ ^
^'

av aq> ^ ± ,^>,
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Differentiating (1) and multiplying (2) bj - , we get

d-'u

dsdt

d^<f) dv d<j)

dsdt ds dt
~
dP d'T^

~ ds
"^

ds^

1 dv u d^
_

p dt p dt

Q T
~ 9^9'

J

(5).

. But by differentiating (3) we have, since - = -^ ,

p ds
d^u d^(j) 1 ^^ _ /^

dsdt dsdt p dt ^
^'

Hence, subtracting the second of equations (5) from the

first, we have by (4) and (6)

d'T T dP_Q^_^d_^^
ds^ p^ ds p \dt,

In the beginning of the motion just after the string has
been cut we may reject the squares of small quantities, hence

-^j may be rejected. Hence we have

^_T__dP Q
ds^ p^ ds p

'

This is the general equation to determine the tension of a

string just after it has been cut.

. . The two arbitrary constants introduced in the solution of

this equation are to be determined by the circumstances of the

case. If both ends of the string are free, we must have
T=0 at both ends. If, again, one end be attached to a small

ring without inertia, which can slide freely along a given

curve, then the velocity of the element attached to the ring

resolved in the direction of the normal to the curve must
be zero.

168. Ex. A string is in equilibrium in the form of a
circle about a centre of force in the centre. If the string he

now cut at any point A, prove that the tension at any 'point 1*

is instantaneously changed in the ratio of 1 —— : 1,

where 6 is the angle subtended at the centre by the arc AP,
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Let F be the central force, tlien P= 0, and Q= — F. Let

a be the radius of the circle. Then the equation becomes

d'T T^ F
ds^ d^ a.'

Let s be measured from the point A towards P, then

s = ad; also F is independent of s. Hence we have

T=Fa-hA€^ + B€-^.

To determine the arbitrary constants A andB we have the

condition T=0 when ^ = and 6 = 277;

But just before the string was cut

T=Fa.

Hence the result given in the question follows.

EXAMPLES.

1. A heavy elastic ring, whose length when unstretched

is given, is stretched round a circular cylinder. The cylinder

is suddenly annihilated, find the time which the ring will

take to collapse to its natural length.

2. A homogeneous light inextensible string is attached

at its extremities to two fixed points, and turns about the

straight line joining those points with uniform angular

velocity. Find the form of the string supposing its figure

permanent.

Besult. Let the straight line joining the fixed points

be the axis of a?, then the form of the string is a plane curve

whose equation is c^ 4-
f;,- J = {a—^Y where a and c are two

constants.
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3. A uniform endless chain is in equilibrium under tlie

action of forces which depend only on the position of the

particle acted on. Every element has an equal velocity

communicated to it in the direction of the tangent to the

chain at that element, prove that the form of the chain will

not be altered by the motion.

4. Let a cable be delivered with velocity c from a ship

moving with uniform velocity c in a straight line on the

surface of a sea of uniform depth. If the resistance of the

water to the cable be proportional to the square of the velo-

city, the coefficient, B^ of resistance for longitudinal motion
being different from the coefficient A^ for lateral motion, prove

that the cable may take the form of a straight line making

an angle \ with the horizon, such that cot^ \ = Ve* + J — i,
where e is the ratio of the speed of the ship to the terminal

velocity of a length of cable falling laterally in water. Prove
also that the tension will be found from the equation

^ A \c y sm \

5. If a; + f, 3/ + 77 be the co-ordinates of that element of

the string in Art. 165, which when at rest was situated at the

point [x, y), and if the undisturbed form of the string be a
catenary and the disturbance be small, prove that

where ^ is the angle between the tangents at [x, y) and

6. A heavy string is suspended from one extremity, and
being slightly disturbed makes small oscillations about the

vertical. Find the form of the curve in which it must be
placed at rest at the time ^ = 0, in order that every point of

the string may reach the vertical at the same time.

Result, If the fixed point be the origin and the axis of

X be drawn vertically downwards, the equation to the string at

the time t\s> y = <^ [x) cos 'sicg t^ where
(f>

is to be determined
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from the equation [I— x) -y— — -? + c^ = 0, and c is any

arbitrary constant depending on the initial form of the curve.

7. A heavy string is attached to two points in the same
horizontal line, so that when in equilibrium the string hangs
in the form of a catenary which does not differ very much
from a straight line. Find the form of the curve in which
it must be placed at rest at the time ^ = 0, in order that every
point of the string may reach the catenary at the same time.

If 2l be the length of the string, and T the time of a small

oscillation, prove that

r=2.y^ cl

ff{c7r-4:l)

8. A chain, having initially the form of a closed plane

curve very nearly a circle, whirls in its own plane round its

centre of gravity; determine the motion so far as to form the

linear partial differential equation on which it depends.

9. The extreme links of a uniform chain can slide freely

on two given curves in a vertical plane, and the whole is in

equilibrium under the action of gravity. Supposing the chain

to break at any point, prove that the initial tension at any
point is T=2/ (^</) +B), where y is the altitude of the point

above the directrix of the catenary, <^ the angle the tangent

makes with the horizon, and A, B two arbitrary constants.

Explain how the constants are to be determined.

10. A string is wound round the under part of a vertical

circle and is supported in equilibrium at the ends of a hori-

zontal diameter by two forces. The circle being suddenly

removed, prove that the tension at the lowest point is instantly

decreased in the ratio 4 : e'^ + e"'^.



CHAPTER VII.

MOTION OP A SYSTEM OF RIGID BODIES.

Sect. I. Conservation of Areas,

169. The general equations of motion of a system of

rigid bodies have been deduced in Chap. II. from D'Alem-
bert's Principle. The equations thus obtained are of the

second order, and the integration of these equations constitutes

the chief difficulty in determining the motion of the system.

Certain general methods have been proposed, and we may, if

we please, use these in solving the equations of motion as

shown in Chap. IV. But these methods always lead to

equations of the same form ; hence, having once noticed this

form, we may make certain rules to write down these integrals

at once, and thus avoid the equations of the second order

either altogether or in part. These rules are called Principles,

and are three in number, viz. the Conservation of Areas, the

Conservation of the Momentum of the Centre of Gravity, and
the Vis Viva. The first two will be considered under one

head.

170. Prop. If a system of particles he in motion under

tlie action of forces which have no moment about a certain

fixed straight line, then the sum of the products of the mass

of each particle and the area which its projection on any
plane perpendicular to that line describes about the line is

proportional to the time during which the motion is considered.

Let this straight line be taken as the axis of z, and let the

plane of xy be the plane on which the areas are described.

Let m be the mass of any particle of which the co-ordinates

are a?, y, z, and let X, Y, Z be the accelerating forces on the

particle. Then the equation
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becomes

Integrating, we have

where h is some constant. Let A be the area described in

the time t by the radius vector of the projection of m. Then
by Differential Calculus we know that

^ dA dy dx
2-7- =a;-f - y-j-.

dt dt ^ dt

Hence the equation becomes

but when t = each term of the sum on the left hand

vanishes j therefore c = 0.

.-. %\7nA)=lhL

Hence the proposition is proved.

The intersection of the line about which the moment of

the forces is zero with the plane on which the areas are traced

is called the pole of areas. The straight line itself is called

the axis of areas. The quantity h is called the area con-

served in two units of time, or sometimes more simply the

area conserved.
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171. Prop. If a system of particles he in motion under

the action of forces which have no component along a certain

fixed straight line, then the sum of the products of the mass of
each particle and its velocity resolved along this straight line is

constant.

Let this straiglit line be taken as the axis of z. Let m be

the mass of any particle of which the co-ordinates are ic, ?/, z
;

and let X, F, Z be the accelerating forces on the particle.

Then the equation

becomes

Integrating, we have

where c is some constant.

If V be the velocity of the particle whose mass is m,
and if a, y8, 7 be the angles its direction of motion makes
with the axes respectively, the equation may be written

2 [mv cos 7) = c.

This principle has been deduced from the equations of

the motion of translation of the system, and the conservation

of areas from the equations of rotation. The first is called

the principle of the conservation of linear momentum, and the

second should be called the principle of the conservation of
angular momentum.

172. Cor. From this proposition we may also infer

that the velocity of the centre of gravity of the whole system

resolved parallel to the above straight line is constant.

For if S, y, i be the co-ordinates of the centre of gravity,

we have
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= c.

dz
Hence -7-

, the velocity of tlie centre of gravity, is constant.

173. It is obvious that the moment of all the internal

forces of any system of particles about any straight line is

always zero. Thus the mutual attractions of two particles

being equal and opposite, their moments will be also equal

and opposite. So also any impacts between the particles of

the system, or any explosions, will not aifect the truth of the

principle. Hence if no external forces act on the system, the

areas conserved on any plane and about any pole in that

plane will be proportional to the time. But these areas will

be different for different planes, and for different poles in each

plane.

174. Prop. HI. In a system acted on ly no external

forces, to compare the areas conserved on differentplanes passing

through the same pole.

Let this point be taken as the origin, and let A^, h^, h^ be
the areas conserved on the co-ordinate planes i/^, zx, xy. Then
the area conserved on any other plane will be the sum of the

projections of the areas conserved on the co-ordinate planes.

Let H be the area conserved on the plane whose direction-

cosines are X, J/, iV, then

H=L\ + Mh^ + m^,

Let h^ = h^ + A./ + h^, then by this formula it is evident

that the area conserved on the plane whose direction-cosines

are

7 K ^2 \
'=1' '"=r' "=!'

is equal to h ; and

H= h{Ll-\-Mm + Nn).

Let 6 be the angle between these two planes, then

cos 6 = Ll+ Mm + iVw.

.'. H = h . cos 6.

R. D. 16



242 MOTION OF A SYSTEM OF RIGID BODIES.

From this it is evident tliat JT is a maximum when 6 = 0,

Hence

With any given point for pole there is a certain plane on
which the area conserved is a maximum, and the direction-

cosines of this plane being constants, this plane is fixed

throughout the whole motion. This plane is called the
Invariable Plane, and its normal is called the Invariable

Line.

Also, the area conserved on any plane is equal to the

area conserved on the invariable plane multiplied by the

cosine of the angle between the planes.

175. Prop. IY. To compare the areas conserved on the

same jplane about different poles.

Let the plane on which the areas are described be taken

as the plane of xy ; let x, y be the co-ordinates of the projec-

tion of the centre of gravity. Let x = x + x\y =y+y be
the co-ordinates of any particle of mass m. Then

im r dt y dt)

is the area conserved about the centre of gravity considered

as a fixed point. Also

is the area conserved about the origin. The difference be-

tween these two is

(^f-^f)^'"+*^'"S"--^^'"
dx

'dt

cly ^ , d^ ^ ,

But Xmx =0, Xmy' = 0, and therefore

^ dx' _. dy'
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Hence the above difference reduces to

/_ dy _ dx\ ^
\ dt ^ dtj

But this is the area conserved by the whole mass collected

at the centre of gravity about the origin. Hence we have
this theorem

;

The area conserved about any origin is equal to the area

conserved hy the whole system about the projection of the centre

ofgravity plus the area conserved by the whole mass collected

at the centre of gravity round the original pole; or, in other

words, it is equal to the area conserved by the motion of rotation

plus the area conserved by the translation.

This proposition might also have been deduced from
Art. 5.

176. Prop. Y. To compare fJie positions of the invariable

plane at different points of a system acted on by no external

forces.

If the centre of gravity be initially at rest, it will remain
fixed throughout the motion (Chap. ii. Art. 33), and therefore

the area conserved by it about any point is zero. Hence the

areas conserved about all poles in any plane are the same,

and equal to that conserved on a parallel plane through the

centre of gravity. It follows also that the invariable plane

corresponding to any pole is parallel to the invariable plane

at the centre of gravity.

If the centre of gravity be in motion, it moves in a straight

line with uniform velocity. Let this straight Kne be taken

as the axis of x, and let the plane of xz be taken so as to

contain the invariable line at the centre of gravity. Let V
be the uniform velocity of the centre of gravity; M the mass
of the body; 7?^, \ the areas conserved about the axes of

X and z.

Let X, y, z be the co-ordinates of any point P, then the

areas conserved about parallels to the axes at P are by Art.

175 respectively
16—2
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Hence the direction-cosines of the invariable plane at P
are

\ _ -MVz _K -\-MVy

where B'' = l^ +ifFV + [\ +MVy)\

Now ?, m, n and H are constants if y and z are constant

;

hence the position of the invariable plane and the area con-

served upon it are constant for all poles situated in any
straight line parallel to the direction of motion of the centre

of gravity.

Again, j&^ is a minimum when z=0 and h^-\-MVy = 0. In
this case 1 = 1, m = 0, n = 0, or the invariable plane is per-

pendicular to the direction of motion of the centre of gravity.

177. The area conserved on the invariable plane at any
other point Q, whose co-ordinates are x, y', z', is given by

H" = h^ + J/^ Vz"" + [\ + MVy'Y,

But H^ = K, and \+MVy = 0',

.-. H''=H'^M'V^[z"^{y'-yy],

Through the point at which the area H conserved on
the invariable plane is a minimum, draw a straight line

parallel to the direction of motion of the centre of gravity.

Let r be the distance of Q from this straight line. Then the

area H' conserved on the invariable plane at Q is given by

178. Peop. YI. In a system acted on hyno externalforces

to determine in what cases the area conserved on a given plane
about a moving pole in a given time is constant.

I
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Let the given plane "be taken as the plane of xy. Let ^, q^

be the co-ordinates of the moving pole referred to any fixed

axes of co-ordinates Ox^ Oy,

Let Xj y be the co-ordinates of any particle m, and let

x=p + x\ y = q + y\

Then the area conserved about the moving pole is

^ f ,dy , dx\ ^

,

and that about the fixed pole,

^ f dy dx\ ,

Hence the area conserved about the moving pole is the

same as the area conserved about the fixed pole, when

, -.da , _, dp dAi dx

There are two cases in which this condition can be con-
veniently satisfied.

First. When the moving pole is the centre of gi-avity

;

for then^ = ^, ^=y, and if the origin be taken in the line

of motion of the centre of gravity -M- — '~,
^ ^ dx X
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Secondly. When the moving pole moves uniformly along

a straight line parallel to the line of motion of the centre

of gravity and with the same velocity as the centre of gravity.

For then

dp _dx ^9__^ A ^^ ^y
dt dt^dt dt^ dp x'

179. Prop. VII. To find the area conserved on any plane f
ahout any pole hy a rigid hody in motion.

First. Let the body be entirely in the plane on which
the areas are conserved. Let r, 6 be the polar co-ordinates of

the centre of gravity referred to the pole of the areas as

origin. Let « be the angular velocity of the body about its

centre of gravity, Mk^ the moment of inertia about the same
point.

Then the area conserved is equal to the area conserved

about the centre of gravity plus that conserved by the whole

mass collected at the centre of gravity. The first of these

is clearly 'tm (^'^ -y- ) » where r\ & are the co-ordinates of any

particle m of the body referred to the centre of gravity as

dO'
origin. But since the body is a rigid system, -it is the

same for every particle and equal to o). Hence we have

2m
(

^'^-7- ) = 2mr'^ . ft)

=:M1C\(D (1).

The area conserved by the whole mass M collected at the

tre of gravity \^ M.r^

served about the origin is

do
centre of gravity is Jf . r^ -^ . Hence the whole area con-

=Wj^ +M:'a) (2).
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There is another useful form into which this expression

may be put. If v be the linear velocity of the centre of

gravity, and 2'> the perpendicular from the origin on its direc-

tion of motion, then

r ^ = .^.

Hence the whole area conserved about the origin is

= Mvp + Mk^(o : (3).

Secondly. Let the body be in motion in space of three

dimensions. Let the plane on which the areas are conserved

be taken as the plane of xy, and the pole as the origin.

Let a?, y, z be the co-ordinates of any particle wi ; x^'y^z be

the co-ordinates of the centre of gravity G,

Let 6)3. , a)j,, ft)j5 be the angular velocities of the body
about the axes of x,y,z', A\ B, C the moments of inertia

about these axes.

The area conserved is

But

^ / dy dx\

dx

dy

Hence, substituting, the area conserved is

tm {(aj" + y"") ay, -(o^yz- co^ xz}

= C ,co,— (Zmyz) . (Oy — (Zmxz) co^. (4).

If the axis of 5? be a principal axis, or if it be the axis

of instantaneous rotation, this takes the simple form

area conserved = C'(o^ (5).

If axes Gx\ Gy\ Gz be taken through the centre of

grayity parallel to the axes of co-ordinates, the above ex-

pression may be put into the form
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^f^f-2?fU^«^-(S^y^0«.-(2^^V)a,. (6),
V dt ^ dt.

where A, B, G are the moments of inertia about the axes
Gx, Gy\ Gz.

Let the point be fixed in the bodj, and let w^, w^, w^

be the angular velocities of the body about the principal

axes at 0, and let A^^ B^, C^ be the principal moments of

inertia.

The areas conserved on the principal planes are respec-

tively A^(D^, B^O)^, C^CD^.

The area conserved on any other plane is the sum of

the projections of. these three areas. Let I, m, n be the

direction-cosines of the normal to the plane of xy referred to

the principal axes at 0. Then the area conserved on this

plane will be

A^(oJ,-\-B^(o^m+ C^cD^n (7).

180. Ex. 1. To find the invariable plane at the centre

of gravity of the solar system.

Let the centre of gravity be taken as the origin, and
let the system be referred to any rectangular axes Gx, Gy,

Gz. Let (o be the angular velocity of any planet about its

axis, and MTi? its moment of inertia about the axis. Let

a, fi, 7 be the direction-cosines of the axis. The axis of

revolution and two perpendicular axes form a system of prin-

cipal axes at the centre of gravity. The area conserved by
the planet on a plane perpendicular to the axis is MJc^w, and
on any plane through the axis, zero. Hence the whole area

conserved on the plane of xy round the centre of gravity is

by Art. 179

MJc^o) cos a.

Let r be the distance of the centre of the planet from
rJf)

the centre of gravity of the solar system, -^ the angular ve-

locity of r in the plane of the instantaneous orbit of the planet.

Then the area conserved by the centre of the planet on the

plane of xy is
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where a' is the inclination of the orbit to the plane of xy*

Hence the whole area conserved by the planet on the

plane of xy is
7/1

Ji, = Mr^ -J- cos OL + MJc^co cos a.
^ at

The values of h^, h^ may be found in a similar manner,
and thence the position of the invariable plane.

181. Ex. 2. ^ three particles of masses m, m', w", at-

tracting each other, start from rest, prove that at any instant

the tangents to their paths will meet in a point, and that if
parallels to their directions of motion he drawn so as to form
a triangle, the momenta of the several particles are as the sides

of that triangle.

Let V, v, v" be the velocities of the particles. The area

conserved by any particle of mass m moving with velocity

v is mvpi where p is the length of the perpendicular from the

origin on the direction of motion. Hence by Art. 170

mv . p + mv .p + nfi'v'.p" = h,

where h is some constant. But in the beginning of the motion

v = 0, v' = 0, v"=0; .-. h=0.

Therefore if three forces represented by mv, m'v', m"v"
were to act along the directions of motion, the sum of their

moments about every point would be zero. Therefore these

forces are in equilibrium, and if a triangle be constructed by
drawing lines parallel to their directions, the forces will be

proportional to the sides of that triangle.

Also the three forces must meet in a point, hence the three

particles are always moving to or from some point 0. But
this point is not in general a fixed point throughout the

motion.

If there be n particles, it may be shown in the same

way that the n forces represented by mv, m'v', &c. are in

equilibrium; and therefore if parallels be drawn to the direc-

tions of motion so as to form a polygon, the momenta of the

particles are proportional to the sides of that polygon. It will
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not however be necessarily true that all the n directions of

motion meet in a point.

If F, F', F" be the resultant attraction on the three

particles, the lines of action of F, F', F" also meet in a

point. For let X, Y, Z be the actions between the particles

mm\ on'm, mm\ taken in order. Then F is the resultant of

- Tand Z; F' ofX and - Z- F'[ of Y and -X Hence the

three forces F, F', F" are in equilibrium *, and therefore their

lines of action must meet in a point 0'. Also the magni-
tude of each is proportional to the sine of the angle between
the directions of the other two. This point is not generally

fixed, and does not coincide with 0.

If the law of attraction be proportional to the distance,

the two points 0, 0' coincide with the centre of gravity G,

and are fixed in space throughout the motion. For it is

a known proposition in Statics that with this law of attrac-

tion, the whole attraction of a system of particles on one of

the particles is the same as if the whole system were col-

lected at its centre of gravity. Hence 0' coincides with G.

Also, since each particle starts from rest, the initial velocity

of the centre of gravity is zero, and therefore, by Art. 33,

G is a fixed point. Again, since each particle starts from
rest and is urged towards a fixed point G, it will move in

the straight line joining its initial position with G. Hence
coincides with G, When the law of attraction is pro-

portional to the distance, it is proved in Dynamics of a

Particle, that the time of reaching the centre of force from

a position of rest is independent of the distance of that posi-

tion of rest. Hence all the particles of the system will reach

G at the same time, and meet there. If %m be the sum
of the masses, measured by their attractions in the usual

manner, this time is known to be

1 J^

182. The principle of the conservation of areas may be

* This proof is merely an amplification of the following. The three forces

F, F', F", being the internal re-actions of a system of three bodies, are in

equilibrium by D'Alembert's Principle.

f
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applied to any system under the influence of forces which
have no moment about one straight line. We may there-

fore make use of the principle in the following cases.

First. If no external forces act on the system the prin-

ciple will apply with any straight line as an axis of areas.

Thus, supposing the solar system to be under the influence of

no external force, the whole area conserved on any plane about
any pole is constant. Let r be the distance of any planet,

treated as a particle, from any fixed straight line arbitrarily

chosen, and let &> be its angular velocity round this straight

line. Then, by the principle,

'^mr^co = h (1).

To illustrate the principle further, let us suppose the

bodies composing the system to become rigidly connected.

The mutual impulsive actions between the particles will be

equal and opposite, and therefore will not appear in the equa-

tion furnished by the principle. Hence the equation (1) will

still hold. The motion of the centre of gravity by Art. 33

will also not be affected by these actions, and if initially at

rest it will continue at rest, if initially in motion it will con-

tinue to move in the same straight line as before, and with the

same velocity. Let ^mr^w be the area conserved by the

system before it became rigid about any axis Gz, through

the centre of gravity. Let Mh^ be the moment of inertia of

the system about this axis at the moment after it became
rigid, and let II be the angular velocity of the rigid system.

Then we have, by Art. 178,

^mr^co = h )

Hence X2 =
Mk'

This gives the initial angular velocity of the rigid system
about any straight line through the centre of gravity. Hence
the angular velocities about three co-ordinate axes may be
found, and thence the whole motion.

Secondly. If the resultant of all the forces which act on
the system be always normal to a fixed plane, the principle will
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apply with any straight line perpendicular to this plane as

axis of areas. Thus if a system of bodies be under the action

of gravity, the whole area conserved on any horizontal plane

is constant.

Thirdly, If the resultant of all the forces which act on the

system always passes through a fixed point, the principle will

apply with any straight line through that point as axis of

areas. Thus if a particle m be moving under the action of a

centre of force, we have

mr ^ = A;

where r is its distance from the centre of force, and -^ its

angular velocity. This is the ordinary equation of motion
round a centre of force obtained in Dynamics of a Particle.

We may now extend this equation to the case of a system of

particles moving round a centre of force and attracting

each other according to any law of force. The equation is

then

z^mr -^ = h.
at

Fourthly. If the resultant of all the forces always passes

through a straight line, the principle will apply if areas be
conserved about this straight line as axis of areas. Thus if a

system of particles move under the action of two centres of

force, the equation of areas will hold if conserved about the

straight line joining the two centres of force.

183. Prop. VIII. A rigid hody is moving freely in a
known manner under the action of no externalforces. Suddenly
either a straight line or a point in the hody becomes fixed. To
determine the subsequent motion.

It is obvious that all the external actions on the body pass

through the fixed straight line or the fixed point. Hence the

principle of the Conservation of Areas will apply if the plane

of areas be either perpendicular to the straight line or pass

through the given point.

I
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First. Let a straight line suddenly become fixed. Let it

be taken as the axis of z.

Let MK^ be the moment of inertia of the body about the
axis of s, and H the angular velocity after the straight line has
become fixed. Suppose that the body when moving freely

was turning with angular velocities g>^, (Oy, co^ about three

straight lines Gx, Gy\ Gz through the centre of gravity

parallel to the axes of co-ordinates. And let the co-ordinates

of the centre of gravity be ^, ^, i.

Then, by the principle of the Conservation of Areas
(Art. 179),

Coy, - i^mz'x) 0), - ^mzy') (o^ +M \x-J^-y -g^

where C is the moment of inertia of the body about Gz', and
'%mzx , ^mz'y' are calculated with reference to the axes

Gx\ Gy\ Gz',

Secondly. Let a point in the moving body be suddenly
fixed in space. Take any three rectangular axes Ox, Oy, Oz,

and three parallel axes Gx, Gy , Gz through the centre of

gravity G. Let w^, (o^, co, be the known angular velocities

of the body about the axes Gx, Gy, Gz before the point

became fixed, 11 3., fl^, O^ the unknown angular velocities

about Ox, Oy, Oz after became fixed.

Then, following the same notation as before, we have

A(o^- (Im x'y') (Oy - (Zm xz) ^^ + ^^
(^ ^ ~

^^)
= A^^ - i^m xy) Hy - {tm xz) O^.

B(Oy - [tm yz) (o, - {tmy'x) co^+tm^ -£ -xjj

= ^'n, - {tm yz) £1, - [tm yx) 11,.

(7ft), - (2w z'x) co^-{^mzy) Wy -\-tm (x ~ "^ ^J
= Cn,- (2m zx) n, - [tm zy) O^.

These equations determine H^, H^, XI,. It is very obvious
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that tliey may be greatly simplified by so choosing the axes ^i
that one of the two sets Ox^ Oy, Oz or Gx,' Gy, Gz may be
a set of principal axes.

*

184. Ex. A s'phere in colatitude 6 is hung up hy a
point in its surface in equilibrium under the action of
gravity. Suddenly the rotation of the earth is stopped, it is

required to determine the motion of the sphere.

Let G be the centre of the sphere, its point of suspen-

sion, and a its radius. Let G be the centre of the earth.

Let ft) = angular velocity of the earth, then \i CG = fxa,

the sphere is turning about an axis GP parallel to CP, the

1
axis of the earth, with angular velocity o), while the centre of

gravity is moving with velocity jxa^mO .(o.

Let OC, Op, and the perpendicular to the plane of DC,
Op be taken as the axes of x, y, z respectively, and let D^,

D.yy 12^ be the angular velocities about them just after the

rotation of the earth is stopped.

By Art. 183, the areas conserved about Ox as axis just

before and just after the rotation was stopped are equal to

each other.
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.-. Mk' 0) cos e = MJi^' n,,

where Mk^ is the moment of inertia of the sphere about a
diameter.

Again, the areas conserved about Oy are equal to each
other;

.-. 3Ik' o) sin ^ + MfM a^o}&me =M {k' + a') O^.

Lastly, the areas conserved about Oz are equal

;

.-. 0==Mk'n,,

Solving these equations, we get

_ . .k' + fia'
X2„= ft) sin tr rr.—Sr" k" + a'

= (osind —-—^ .

7

But 12^ = ft) cos d.

Adding together the squares of Ha,, Xl^, 12^ we have

where fl is the angular velocity of the sphere about its

instantaneous axis.

Sect. II. Vis Viva.

185. Let X, y, z be the co-ordinates of a particle m of

a system in motion at any given instant ; and let X, F, Z be
the accelerating forces acting on the particle resolved in the

directions of the axes. Then, the summation being extended

throughout the system, the function

tmiXdx-VYdy^Zdz)

^ will in general be a complete differential of some quantity U,

This quantity Z7, when it exists, is called the force function,

186. Prop. I. To mom that there will he a force

function first, when the forces tend to fixed centres at finite

distances, and arefunctions of the distancesfrom those centres;
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and secondly^ when the forces are due to the mutual attractions

or repulsions of the particles of the system, and are functions of
the distances between the attracting or repelling particles.

Let m<^ [r) be the action of any fixed centre of force on
a particle m distant r, estimated in the direction in which
r IS measured, i.e. from the centre of force. Then all the

forces due to the several centres of force are exactly equivalent

to all their several components mX, m Y, mZ. Hence, revers-

ing the latter, there will be equilibrium. Therefore, by Virtual

Velocities,

2m^ (r) dr = Xm [Xdx + Ydy + Zdz).

I

iThus the force function exists, and is equal to

%m
j(f>

(r) dr.

In the same way it can be shown that there will be a force

function when the forces are such as result from the attraction

of the particles of the system on each other, provided the

attractions are functions only of the distances between the

particles.

Let mm'(f) (r) be the action between two particles m, m\
whose distance apart is r; and, as before, let this force be
considered positive when repulsive. Then we have

Smw' <^ (r) dr = ^m {Xdx + Ydy + Zdz),

and the force function is equal to

%mm'
j<f> if) dr,

187. Pkop. II. Ifa system receive any small displacement

ds parallel to a given straight line and an angular displace-

ment dd round that line, then the partial differential co-

efficients
-J-

and -j^ represent respectively the resolved part

of all the forces along the line and the moment of the forces

about it.

Since ^Z7 is the sum of the virtual moments of all the

forces due to any displacement, it is independent of any par-

ticular co-ordinate axes. Let the straight line along which ds
is measured be taken as the axis oi z.
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Taking the same notation as before,

dU=Xm {Xdx + Ydy + Zdz),

But dx = 0, dy = 0, and dz = ds^ hence we have

dXJ— ds .XmZ'j

.*. ~^f- = XmZ,
as

Here ^Z7 means the change produced in U by the single

displacement of the system, taken as one body, parallel to any
straight line, through a space ds.

Again, the moment of all the forces about the axis of z is

Xm{xY-yX),

but by Art. 91, dx = — ydd, and dy — xd6, and dz = 0, hence

the above moment is

^ Ydy + Xdx 4- Zd^=^'^—^

—

re

_dU
~ dO'

Here dU 18 the change produced in U by the single rota-

tion of the system, taken as one body, round any axis, through
an angle 'dd,

188. Def. The Vts Viva of a particle is the product

of its mass into the square of its velocity,

189. Prop. III. If a system he m motion under the action

of finite forces, and if the geometrical relations of the parts

of the system he expressed hy equations which do not contain

the time explicitly, the change in the vis viva of the system

in passing from any one position to any other is eqmil to twice

the corresponding change produced in the force fancticm.

In determining the force function all forces may be omit-

ted which would not appear in the equation of Virtual Ve-
locities.

B.D. 17
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Let ic, 2/, z be the co-ordinates of any particle w, and let

X, y, Z be the resolved parts in the directions of the axes of

the impressed accelerating forces acting on the particle.

The effective forces acting on the particlem at any time t are

d^x d\ d'z

^^' ^W' ^^^-

If the effective forces on all the particles be reversed, they will

be in equilibrium with the whole group of impressed forces

by Art. 28. Hence, by the principle of virtual velocities,

S.{(x-5)3..(r-S)a,.(^-5)s4 = o,

where hx, S^, Bz are any small arbitrary displacements of

the particle m consistent with the geometrical relations at the

time t,

Now if the geometrical relations be expressed by equa-

tions which do not contain the time explicitly, the geome-
trical relations which hold at the time t will hold throughout

the time Bt ; and therefore we can take the arbitrary displace-

ments Bxy By
J
Bz to be respectively equal to the actual dis-

placements

P^' i'^' P^
of the particle in the time Bt.

Making this substitution, the equation becomes

^ /d^x dx d^y dy d^z dz\

^'^\de~dt'^~de tt'^'dfJt)

Integrating, we get

^C^'lXmUxdx^-Ydy^Zdz),

where C is the constant to be determined by the initial con-^

ditions of motion. ^
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Let V and v be the velocities of tKe particle m at the

times t and t'. Also let U, U' be the values of the force

function for the system in the two positions which it has at

the times t and t'. Then

190. Let a force P act on a particle which describes the

elementary arc ds in the time dt. Let dp be the projection

of ds on the line of action of P estimated positive in the

direction in which P acts. Then Pdp is called the " worW
done by the force P in the time dt. If a force act con-

tinuously on a particle during a time J', then the work will

clearly be represented by I —^ dt. Let X, F, Z be the

resolved parts in the directions of the axes of the accelerating

forces which act on any particle m. Then the whole "work'*

done, while the system is moving from one position to an-

other, is

W=tm[ [Xdx + Ydy + Zdz),

Let Z7, V be the values of the force function of the

system corresponding to the two positions of the system.

Then

By the principle of vis viva we have

Therefore the change in the vis viva of a system in moving
from one position to another is equal to twice the "work"
done by the forces during the motion.

In every dynamic system there are three quantities, which
are equal to each other. These are, briefly, the change in

the vis viva, twice the change in the force function, and twice

the "work" done by the forces. When the system consists

only of one particle, the force function is also called the po-
tential.

191. The utility of the Principle of Vis Viva depends

in great measure on the fact that all the unknown reactions-'

17—2
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of the system do not appear in the equation. All forces and
reactions will not appear in the force function which would
not appear in the equation of virtual velocities. These forces

may be enumerated as follows

:

I. Those reactions whose virtual velocities are zero.

1. Those whose line of action passes through an instan-

taneous axis ; as rolling friction, but not sliding friction nor

the resistance of any medium.

2. Those whose line of action is perpendicular to the

direction of motion of the point of application; as the re-

actions of smooth fixed surfaces, but not those of moving sur-

faces.

II. Those reactions whose virtual velocities are not zero

and which therefore would enter into the equation, but which
disappear when joined to other reactions.

1. The reactions between particles whose distance apart

remains the same ; as the tensions of inextensihle strings, but

not those of elastic strings.

2. The reaction between two rigid bodies, parts of the

same system, which roll on each other. It is necessary

however to include both these bodies in the same equation of

vis viva,

III. All tensions which act along inextensihle strings,

even though the strings are bent by passing through smooth
tixed rings.

For let a string whose tension is T connect the particles

m, m , and pass through a ring distant respectively r, r from

the particles. The virtual velocity is clearly

Thr + Thr',

because the tension acts along the string. But since the^

string is inextensihle

3/. + Sr' = ;

therefore the virtual velocity is zero.
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192. If a system be under the action of no external

forces, we have

x=o, r=o, Z=0,

and hence the vis viva of the system is constant.

If, however, the mutual reactions between the particles of

the system are such as would appear in the equation of vir-

tual moments, then the vis viva of the system will not be
constant. Thus, even if the solar system were not acted on
by any external forces, yet its vis viva would not be constant.

For the mutual attractions between the several planets are

reactions between particles whose distance does not remain
the same, and hence the sum of the virtual moments will not

be zero. See also Art. 186.

Again, if the earth be regarded as a body rotating about
an axis and slowly contracting from loss of heat in course of

time, the vis viva will not be constant, for the same reason

as before. The increase of angular velocity produced by this

contraction can be easily found by the conservation of areas.

193. Let gravity be the only force acting on the system.

Let the axis of z be vertical, then we have

x=o, r=o, Z=-g.

Hence the equation of vis viva becomes

tmv" - trnv" = - 2% {z -z).

Thus the vis viva of the system depends only on the

altitude of the centre of gravity. If any horizontal plane be

drawn, the vis viva of the system is the same whenever the

centre of gravity passes through the plane.

194. Peop. To determine the vis viva of a rigid lody

in motion.

If a hody move in any manner its vis viva at any instant

is equal to the vis viva of the whole mass collected at its centre
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ofgravity^ plus the vis viva round the centre of gravity con -

sidered as a fixed point: or

The vis viva of a body = vis viva due to translation

+ vis viva due to rotation.

Let X, y, z be the co-ordinates of a particle whose mass
is m and velocity v, and let x, y, z be the co-ordinates of the

centre of gravity G of the body.

Let x = x + x\ y = y-\-y\ z = z-\-z (1).

Then by a property of the centre of gravity

l,mx = 0, X7ny' = 0, Imz' = 0.

Hence

^ dx ^ ^ dy'^ . ^ dz

Now the vis viva of a body is

Substituting for x, y, z from (1), this becomes

^d^

Tt.'-{%-mvHjhm-m
c^ ^ dx' d^ ^ dy dz ^ dz

All the terms in the last line vanish. The first term
in the first line is the vis viva of the whole mass 2w, collected

at the centre of gravity. The second term is the vis viva due
to rotation round the centre of gravity.

This expression for the vis viva may be put into a more
convenient shape.
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First. Let the motion he in two dimensions. Let v be

the velocity of the centre of gravity, r, 6 its polar co-ordinates

referred to any origin in the plane of motion. Let r be the

distance of any particle whose mass is m from the centre of

gravity, and let v be its velocity relatively to the centre of

gravity. Let gj be the angular velocity of the whole body
about the centre of gravity, and Mk^ its moment of inertia

about the same point.

The vis viva of the whole mass collected at G is Mv^,
which may by Differential Calculus be put into either of the

forms

"=-!(S)'-(f)}

='{(S)"--(f)]-

The vis viva about G is ^mv'^. But since the body is

turning about Gj we have v' = r'to. Hence

%mv^ = 0)^ . Xmr'^

= co\Mk'.

Hence the whole vis viva of the body is

tmv^ = MiP + MkW.

If the body be turning about an instantaneous axis, whose
distance from the centre of gravity is r, we have v = rco.

Hence

Xmv'' = 3fco'{r' + k')

where Mk'^ is the moment of inertia about the instantaneous

axis.
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Secondly. Let the body he in motion in space of three

dimensions.

Let V be the velocity of (r ;
r, 0, (j) its polar co-ordinates

referred to any origin. Let co^,(Oy, w^ be the angular velocities

of the body about any three axes at right angles meeting in G,
and let A, B, (7 be the moments of inertia of the body about

the axes. Let x, y\ z be the co-ordinates of a particle m re-

ferred to these axes.

The vis viva of the whole mass collected at G is Mv^,

which may be put into either of the following forms (see

Differential Calculus) :

MP̂='l(f)"Hi)'Hf

VP

The vis viva due to the motion about G is

mv -H^hdhm-
But

dx'

dt-
= 0,/--<^zy

dt
: (O^X --co^'

dz'

dt
~ <».y--WyiC'

Substituting, we get, since A = 2m {y^ + 2'*),

B^tm[z'^-\-x'^), C=Xm{x" + y'%

— 2 (2w xy) (ji)^(Oy — 2 (Zmy'z) ftj^tw, — 2 (Xmz'x) (o^cj^

If the axes of co-ordinates be the principal axes at Gj
this reduces to

tmv'' = Aoy' + Bco'+Cco,\
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If the body be turning about a point 0, whose position

is fixed for tlie moment, the vis viva may be proved in

the same way to be

where A\ B\ C are the principal moments of inertia at

the point 0, and (0^,(0^^ o), are the angular velocities of the

body about the axes.

195. Ex. 1. A circular wire can turn freely about a
vertical diameter as a fixed axis, and a head can slide freely

along it under the action of gravity. The lohole system being

set in rotation about the vertical axis, find the subsequent

motion.

Let M and m be the masses of the wire and bead, at

their common angular velocity about the vertical. Let a be
the radius of the wire, Mk^ its moment of inertia about the

diameter. Let the centre of the wire be the origin, and let

the axis of y be measured vertically downwards. Let be
the angle the radius drawn from the centre of the wire to the

bead makes with the axis of ^.

It is- evident, since gravity acts vertically and since all

the reactions at the fixed axis must pass through the axis,

that the moment of all the forces about the vertical diameter

is zero. Hence, by conservation of areas, we have

Mk^co + ma^ sin^ 6(o = h,

And by the principle of vis viva,

MkW + m{a^{^ + a' sin'' 6A = C+ 2mga cos 0.

These tw^o equations will suffice for the determination

of -7- and CO. Solving them, we get

J'PTW^in^ + '""' (f) = ^+2'"^'^'=°'^-

This equation cannot be integrated, and hence 6 cannot
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be found in terms of t. To determine the constants

h and G we must recur to the initial conditions of motion.

Supposing that initially 6 = 7r, and -^ = and co = a, then

h = Mk'ix and 0= 2mga + MhW

196. Ex. 2. Two equal and perfectly rough spheres are

placed one on the top of the other in unstable equilibrium,

the lower one resting on a perfectly smooth horizontal plane.

A slight disturbance being given to the systsm, find the sub-

sequent motion, supposing the centres of the spheres to move in

oneplane.

Let G, C he the centres of the lower and upper spheres,

P their point of contact. Then by the principle of the con-

servation of the centre of gravity, the common centre of

gravity P of the two spheres moves in a vertical straight line.

Let this line be taken for the axis of y, and let the vertical

plane in which the centres of the spheres move be taken for

the plane of xy, and let the origin be in the fixed horizontal

plane.

Let X, a be the co-ordinates of G, x, y of G', and let 6 be
the acute angle GG' makes with the vertical. Let GA, G'A'
be those radii of the spheres which initially were in the same
straight line. Then since one sphere rolls on the other, the

angles A GP, A! G'P are equal ; let this angle be =
<f).

Let
F be the friction between the spheres.

Now the vis viva of the sphere G = vis viva due to

translation plus the vis viva due to rotation, Art. 194, The

first of these is m{^^, and the latter is MM^ |^^^^}''

since ^ — </> is the angle a fixed line GA in the body makes
with a fixed line in space, viz. the vertical. Similarly the

vis viva of the sphere G' is

I
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Now the only impressed force is gravity, therefore the

force function is

-Mjgdy' = MC-Mgy\

Hence, by the principle of vis viva, we have

= 2a-2^y (1).

Taking moments about the centre of gravity of each

sphere, we have

<P{d-<l>) Fa
^. df —M ^^'

d^e + cl>)_Fa -

^ ~~de ~lf ^^^'

Also we have the geometrical equations

X = — asin^ (4),

X =a sin Q (5),

y = a + 2acos^ (6).

To solve these,

Subtracting (2) from (3),

^ = 0;

.*. ~ = const.
at

Since the motion starts from rest we have -^ = 0. Hence
dt

(f)
is always zero, or the two spheres descend as if they were

rigidly connected.
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Substituting for a;, oc and y from (4), (5), (6), equation (1)

becomes

l^ + a'^ + «^ sin*^^) ( -T- ) = ^« (const. — cos B) .

dt)

Since the initial value of ^ is ^ = 0, then the right-hand

side of this equation is clearly =^a (1 — cos &), This equation

. de
gives ^.

At the instant when the upper ball reaches the ground

Q — \. hence we then have ( -j- )
= ,., ^̂ .,

.

2 \dt) k -\-2a^

197. Def. If a body be suspended from a fixed point

under the action of gravity, and if the angular motion of

the line joining to the centre of gravity be the same as

that of a string of length Z, to the extremity of which a heavy
particle is attached, then I is called the length of the simple

equivalent pendulum. This is an extension of the definition

in Art. 36.

If a body turn about a fixed point under the action of

gravity, there does not in general exist any such quantity as

the length of a simple equivalent pendulum. Thus suppose

a body, such that two of its principal moments at the centre

of gravity G are equal, to be suspended from a fixed point

in the axis of unequal moment G.

Since the moment of all the forces about a vertical

through is zero, we may apply the principle of conserva-

tion of areas with this line as axis. Art. 179.

Taking the usual notation, we have therefore

— A(i)^ sin 6 + C(o^ cos ^ = a.

And, by the principle of vis viva,

A {<D^ +O + Cw^ = ^ + 23f^7i cos e.

By Euler's equations in Art. 102, we have for the motion

about OCi

at

Hence ©^ is constant. Let /3' = fi— Cto^,
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But since (o^ = — sm6~-, and o)^ = -j-j these equations

become

A sin^'O —- + Cncosd = a
at

^{-^^(sy+(S)]=^+^^^^^-^

To determine the arbitrary constants a and jS we must have

recourse to the initial values of 6 and^/r. Let 6^,-^^, -~ , -^
ctt cLt

be the initial values of ^, ^/r, — , -^ , then the above

tions become

equa-

sm^ ^ -y- + -— cos ^ = sm^ 6^ -f- + -r cos ^_

'OVf -».©*©«¥<""-««]
(I).

These equations, when solved, give 6 and a^ in terms of ^,

and thiis determine the motion of the line OG, The corre-

sponding equations for the motion of the simple equivalent

pendulum OL are found by making C=0, A = MP^ and h = Ij

where I is the length of the pendulum. This gives

at
sin^O.

dt

•i«©'-©'-'-'.(f)"*(f)'^'f-'j

(2).

In order that the motions of the two lines OG and OL
may be the same, the two equations (1) and (2) must be the

same. But this cannot be the case unless

Cn cos ^ =
J
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i. e. unless either n = 0, or (7 = 0. Hence the body must either

have no rotation about (r, or else the body must be a rod. In
either case, the two sets of equations are identical if

2Mgh 2q

or Mlh = A.

Let A = 3Ik'^, then the length of the simple pendulum is

given by
Ih = k'\

This is the same formula which was obtained in Art. 37,

where the body was supposed to move in a vertical plane.

Sect. III. Virtual Velocities,

198. The Principle of Virtual Velocities is of the greatest

use in Statics, because it supplies us with equations sufficient

for the solution of every problem, free from all the unknown
reactions. In Dynamics also the same principle may be em-
ployed with advantage, and for the same reason.

Peop. To ohtain the general equations of motion of a
system of rigid bodies in a form free from the unknown re-

actions. Lagrange, Mecanique Analytique,

Let ic, y, z be the co-ordinates of a particle m, and let X,
F, Z be the impressed accelerating forces acting on this par-

ticle. Then we have the equation

=^l.m[Xhx+Y^y-\-Zdz) (1),

where Sa;, S^, Zz are any small arbitrary displacements con-
sistent with the geometrical relations, and X, F, Z do not
contain the rPflpfinTia nf flip sjvafPTn

sistent witn tne geometrical relai

contain the reactions of the system.
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In tlie following investigation, for the sake of brevity, dif-

ferential coefficients with respect to t will be denoted by
accents. Thus

The quantities x, t/, &c. are not independent of each other,

being connected together by the geometrical relations of the

system. But they may all be made to depend on a certain

number of independent variables whose values will determine

the position of the system at any time. Let these independent
variables be 6, (j>, yfr, &c. Then x, y, &c. are functions of

e,
<t>,

&c. Let x=f{d, <j>, ...), y = F[e,(t>, ...), &c. If the

geometrical relations contain the time explicitly, then x, y, &c.
will be functions of t also

;

.-. hx =Ahe¥B^+ ...

x' = Ae' +B<I)' +...

where A, B, &c. are written for /' (^), /' (<^), &c. There
will be similar equations for Zy, y\ &c.

(2).Now
d^x ^ d , ,^ . , dSx
—r:r ox -= —7- iX ox) — X —r-
df dt'' ^ dt

But x'Bx = {A'e^+AB<l>' + ,..)Bd

+ {BAe' + B'<i>' + ...)h(t>

+

and x'' =AW+ 2AB6'<f>' + B'<tP + . .

.

••^^^=2
de' ^^+2 #' ^* + -

d.,^.^^dd{x'^) ld{x!^)dW

dt^''^'^^''2dt dd' ^^^2 dd' dt

+ similar terms in ^, '>^j &c (3).
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Again, since the operations d and h are independent, we
have dhx — Bdx, and therefore

,dSx ,5 ,

X —J— =xox
at

4- similar terms in ^, i|r, &c (4).

Substituting from equations (3) and (4) in (2), we get

^ _ f

^

d{x"') d{xy\ l^a, (similar terms
^^ ~

1^^ dd' dd \2^'^ (in ^, f , &c.

By similar reasoning, we have

d^^ _{d d {y") d {7/^)1 1^^ [similar terms

df y ~ \dt dd' dd j 2 "^ [in ^, ^, &c.

d'^z
^ _ (d d (z^) d{z^)\ 1 ^^

[similar terras

d? \dt~dd' dO~] 2 "^ [in ^, ^/r, &c.

Let T he the vis viva of the whole body, so that

T:=l,m{x" + y''+z").

Then adding together the three equations above, we
have

^ fd'x^ d'y^ d'z^\ fd dT dT\l^^

+ similar terms in ^, -i/r, &c.

Let Z7be the force function of the system, then

Sw {XZx + Yhy + Zhz) =BU

_ dU ^^
[similar terms

dd [in
<f)j

^/r, &c.
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By equation (1) the two expressions on the right hand
sides of these equations are equal. But since SO, St/), &c.
are independent, this equality cannot exist unless the coeffi-

cients of Bd, S<pj &c. are separately equal.

Therefore

dt d& dS ~ dd

d^dT_dT^^dU
dt d(f)' d<j) d<l>

(5).

&c. = &c.
J

These equations are of the second order, and their number
is always equal to the number of independent quantities

6,
(f),

&c. to be found. Hence they are sufficient to determine

the whole motion. These are the very equations we should

have obtained if we had written down the ordinary equations

of motion and eliminated the unknown reactions.

The equation of vis viva has been obtained in Art. 189,

by another application of the principle of virtual velocities.

But the equation of vis viva is of the Jirst order, and gives

at once a first integral of the equations. In this respect the

equation of vis viva has the advantage. But on the other

hand, it only supplies us with one equation, and if therefore

the system admits of more than one independent motion, it

is insufficient for the solution of the problem.

199. Prop. To determine the oscillations of a system of
bodies about a position of equilibrium.

Let T be the vis viva of the whole system which may
be found by Art. 194, and let ?7be the force function. Let

^, <^, ... be n certain small independent quantities by which

the position of the system may be determined, and whose

values are zero when the system Is in the position of equi-

librium. Also, as before, let accents denote differential co-

efficients with respect to t,^ Then we have the n equations

d_dT_dT^dU
dt dff dO ~

di) (5).

&c. = &c.

E. D. 18
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Let Xj y, z be the co-ordinates of a particle w?, then

V^ tmf[x, y, z) j

(6).

The co-ordinates x, y, z are functions of 6,
(f),

... tind

may be expanded by Taylor's Theorem in powers of 6, cf) ...

.

Assuming that the coefficients of the first powers do not all

vanish, we may, since 0, </>, ... are small quantities, neglect

the squares and higher powers. Let then these expansions

be

2/= /3 + ^,^ + ^,^+... i (7),

z =j+%6+%(j)+ ...^

where a, ^, 7, &c. are constant quantities.

Hence

y = ^,^'+/9,f+... I (8).

- Substituting in (6), we see that Tis a function of 6', <j>' ,.,

and not of ^, ^, ... . Hence

dT dT
dO"''^ 5^=^'&^- = « (9),

and the equations (1) reduce to

d_dT^ _ dU^
dtdO'^^dO

&c. = &c. J

(10),

Let the values of T and V after substituting from (7)
and (8) m the equations [io) be
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(11),

where TI^ is tlie value of ?7when the system is in the position

of equilibrium, and ^^ , a^ , &c. are constants.

In these expressions all terms ahove the second order are

to be neglected.

The terms of the first order in U— U^ are absent, because

by the principle of virtual velocities

SU= tm {Xhx + Yhy 4- Zhz)

vanishes in a position of equilibrium so far as quantities of

the first order are concerned. See also Todhunter's Statics,

Art. 263.

Substituting in equations (10), it is obvious that the n
resulting equations will be linear, and of the form

^ d'^e ^d'6 ^ ^

di

(12),

&c. = &c.

where ^j, je^, &c. F^^f^^, «S:c. are all constants.

To solve these, we must, as usual, assume

^ = ^sin(\« + /c), ^ = Z;'sin(\^ + A:), &c (13).

Substituting in the n equations (12) we shall obtain w — 1

equations to determine the n — \ ratios -r, -r- , &c., together

with an equation of the n^ degree to determine the n values

of W
18—2
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This substitution may be effected once for all, as follows.

The equations (12) become

- V {EJc^+EJc +...) = e,^ + ejc' + ...

1

^X'\FJc + FJc' ^,.,)=fjc+fjc' -V ,„ (14).

&c. = &c. •'

Keferring to the manner in which the equations (12) were
obtained from (10) and (11), we see that

dd

Hence, if we put

(15),

which are obtained from the expressions for T and U— U^ , in

equations (11) by writing k for 6' and 6, U for ^ and ^
then

1

dV,

dk
ejc + ejc {• ...

Hence the equations (14) become

&c. = .

(16).

In these equations the quantities k, k\ &c. enter in the

first power only, and the ratios kik'-.k" i &c. niay be eli-

minated by the usual general methods.

I
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200. Ex. Two rods AB, BC, are Joined hy a hinge at

B, so that each can freely turn about B in all directions. They
are suspended from a fixed point at A, and make small

oscillations in one plane about the vertical. It is required to

determine the motion.

The following investigation should be compared with that

in Art. 82.

Let 6, <j> be the small angles the rods AB, BC respect-

ively make with the vertical. Let 2a, 2b be the lengths

of the rods, m, m their masses. Let the axis of x be drawn
vertically downwards through A, and let a?, y be the co-

ordinates of the centre of gravity of BG, Then

T=m^e'' + m'(^' + y" + ^^<f^'y

But

aj = 2a cos ^ + Z> cos (^, ^ = 2a sin ^ + J sin
<f) ;

.*. x'— — 2a sin ^ .
^'— 5 sin ^ . </>', y = 2acos d.ff+h cos (j) . (j)J

Substituting in the expression for T, we get

T= (~ ma' + 4m a^) 6" + ^ mV <t>" -f- ^mab cos [6 - </))(9'(/>'.

^
Neglecting all small quantities above the second order,

this reduces to

T=^{m-\- 3m') a^O" + g m'Z»Y=^ + ^m'abff<f;
;

/. i; = I (m + 3m') a^]^ + \ m'b'^lc'' + ^mab kh\

Also, the expression for the force function ?7is

, U= mga cos 6 + m'gx,

= (m + 2m') ga cos 6 + m'gh cos <^,

= U,-\{m+2m')ga.eP-'\m:gb,f;

.\ U^==-l{m-{-2m')^ak' -lm'gbk'\ .



-(1)-

278 MOTION OF A SYSTEM OF RIGID BODIES.

The small oscillations being represented by

6 — k8m{\t-\-K)j </) = ^'sin (X^ + /c),

we have by (16) the equations

X'^ |- {m + 3m') a%+ A.mdbTc ^ - 2 (m + 2m') gak = '

V
I?
mVk' + ^m'ablX - 2mghJc=

to determine -r and X. Eliminating ^^ we get

II
(^ + 3^') aV - (m + 2m') ^al .

||
m'5V - m'^sl

= 4m'VZ^V.

Both the values of \^ obtained from this equation are

real and positive. Let the values of X thus found be ± \
and i \. Then

6 = h^ sin (Xj^ + /^j) + /^a
sin (X^^ + /fj,

^ = h^ sin (Xj^ + K^ + ^a'
sin (X^^ + /cj,

where the ratios —-, ~ are known from (1) when the cor-

responding values of X are substituted. The four arbitrary

constants \, k^^ k^, k^^ may be found from the initial values

of e, </>, e\ f

.

The equations of the motion of the rods when the motion
is not small may be easily obtained from the expressions for

T and £/" in a form free from all the unknown reactions.

- = U ma^ + 4m'aM 2^' + ^rdab cos {6 - ^) ^',
dT
dO'

—= — (7/^4. 2m') ga sin d.
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Hence the equation

becomes

d dT_ dT_ dU
dtdff ' de~ dd

- ma^ + ^man 2 -tt + ^raah cos '{0 - ^) df

+ ^mah sin ifi
- <^) f

-^
j = - 2 (m 4- 2m') ^a sin ^,

and in the same way the equation

becomes

d^dT__dT^_^dU
dt dcf)' d(f) dip

3
^'^'^ + ^rnah cos {^-<f)^

' — Amah sin (^— <^) l-j-j = — 2mgh sin <^.

These equations however cannot be easily solved.

201. Prop. To explain the principle of the co-existence of
small oscillations.

It has been proved that the motion of any system is made
up of a number of simultaneous oscillations whose general

type is

A; sin (X^ + ^).

Each of these motions is called a simple oscillation, and if the

initial conditions be properly chosen, any one term will give

the law of motion, and the system will make small oscillations

analogous to those of a simple pendulum. Thus the general

motion of a system of bodies is made up of all the simple

oscillations of which it is capable. The number of such

simple oscillations is not necessarily equal to the number of

moveable bodies, but is equal to the number of independent

motions. When the periods of all these simple oscillations
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are commensurable, the whole system will return to the same
state in a period equal to the least common multiple of these

periods.

202. Prop. If a system ofhodies he in equilihrmm under

the action of any forces^ to determine whether the equiUhrium is

stable or unstable*.

Let the system receive any small disturbance and let the

type of the consequent motion be k sin {Xt + K). Then, fol-

lowing the same notation as before, the equation to deter-

mine \ is found by eliminating the ratios k : k' : k" : &c.

from the equations

dk dk

dk' dk'

&c. =

(1).

Multiplying these equations respectively by k, k', &c. and
adding we get, since T^ and U^ are homogeneous functions

of the second order f,

V7; + 2Z7, = 0;

.•.X^ =-f ..(2).

There are three different forms which the type of motion
may assume according to the nature of the values of X. If

all the values of X^ are positive, the type of the motion is

kmi(Xt + k).

In this case the motion consists of a number of simultaneous

small oscillations about the position of rest. The system
never departs far from its position of rest, and the equi-

librium is said to be stable. If any value of X'^ be negative,

the corresponding trigonometrical expression takes the form

A^ + Be-"^,

* See Lagrange's M4canique AnalyLique; Duhamel's Cours de Mecanique,
Vol. II. ; and Vieille's Cours Complementaire cfAnalyse et de MScanique
Rationelle.

t Todhunter's Diff. Calc. Chap. Viil. p. io8.
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In this case the motion is said to be unstable, for 6, <^, &c.
will generally become large if a sufficient time t has elapsed.

Lastly, if any value of X^ be imaginary, the corresponding

trigonometrical expression takes the form

{A^^ + Be-'^) sin {jSt + 7).

In this case the motion is oscillatory, but as the magnitude
of the oscillations continually increases with the time, the

motion is said to be unstable. The motion about a position

of unstable equilibrium is not necessarily such as to bring the

body far from its position of rest. For if the initial conditions

can be so chosen that the coefficients of all the terms of the

form Ae^* vanish, the motion will always be small. In such

cases the equilibrium may be said to be stable for some dis-

placements and unstable for others.

When a system is in equilibrium, we know from Statics,

that the force function U is either a maximum or a mini-

mum*. First, let it be a mimmum, then U— U^ is positive

for all values of 6, <^,... less than certain finite limits. Now
Z7j is obtained from U— U^hj writing the very small quan-
tities k, -k', &c., for 6,

(f>,
&c. Hence U^ is also positive.

Again, since T is the vis viva of the system, it is a function

of 0\
(f)',

&c., which is essentially positive for all values of

d\ </)', &c. Hence T^ which is obtained from T by writing

Jc, k', &c. for 6', (j)', &c., is also -positive. Hence, by equa-

tion (2), the values of V corresponding to real values of

k, k\ Sec. are negative. Therefore there can be no real term

of the form ^sin(\^ + A:). That is, the equilibrium is un-

stable.

Secondly, let U be a maximum, then U— U^ is negative,

and therefore by the same reasoning as before U^ is negative.

Hence by equation (2) the values of \^ corresponding to real

values of k, k', &c. are positive. Therefore the type of the

vibration is k sin (\t + k). When k, k', &c. and therefore also

in general X, are imaginary, the type of vibration becomes

{A€°-^+ Be-"*) sin {I3t + y). It remains to show that there

will be no terms of the latter form. By the equation of vis

viva we have

" * Todhunter's Statics, Art. 263.
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Let T\ Z7' be the initial values of T, Z7, then we have

T+2[U,-U) = T'-\-2{U,-U').

Now since U^ is the maximum value of ?7, the quantities

U^ — U, and U^—U' are both positive, and since the vis viva

T is essentially positive, it follows that T is always less than
T' + 2 [Uq— tl'). Hence the vis viva of the system never

exceeds a certain limit depending on the initial conditions of

motion. Hence the type of motion cannot contain any such

term as [A^+Be-'^) sin {fit-\- 7), for then the vis viva would
go on continually increasing with the time. Hence the type

of vibration is ^sin(\^ + /c), or the equilibrium is stable.

Any further discussion of the general equations of motion
of a system of rigid bodies would be out of place in so ele-

mentary a work as the present. The reader is therefore

referred to Lagrange's Mecanique Analytique,

The two following articles are taken from Pratt's Mecha-
nical Philosojphy,

203. Principle of Least Action. If a system of parti-

cles move under the influence of any forces^ the value of the

integral Xmjvds as the system passes from one given position

to another is less than if the particles had taken any other

course.

In this principle the geometrical conditions are supposed
to be such that the equation of vis viva will apply.

This is called the Principle of Least Action; because, in

general 2 . mjvds is a minimum.

Let B be the symbol of variation in the Calculus of varia-

tions: then

B (2 . mjvds) =%,mJB {vds) = S

.

mJ{vB . ds + dsSv)

=^t,mf{vS,d8-\-ldtS.v').
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Suppose the particle m rests on a curve surface, and that

It is the normal pressure, a, yS, 7 the angles of its direction

;

X, F, Z the accelerating forces acting on w, then

-3:^ =X+— cosa, -yf =r+-cos^, -Tr=z + — COS7.
df m dt m dt m *

Let X = be the equation to the surface ; then

*=°'"=^^' =^'^=^^' '^^^=^irz'

1 dU dU dL"

Hence i>' = 2 /(X(fe+ Ydy + Zdz)+2(- VdL,

if the particle do not rest on a surface, J5 = ; and if it do,

still dL = 0', because we suppose the motion to be such, that

particles on surfaces remain on the surfaces

;

.-. V = 2j[Xdx + Ydy+ Zdz) = ^ (a?, y, z) + const.

;

.-. \z.v^^Xhx+Y^y + Zdz

df df ^ df m df df ^ df

Again, ds^ = dx^ -\-dy^ + dz^,

.*. dsS.ds = dxB . dx + dyZ . dy + dzh . dz ;

Hence f('i;S. (75 +^ J^ .t;^) = ^Sa; +^ Sy + ^3^ 4-const.

and at the limits Ix = 0, ly = 0, 82? = 0, because the first and

last positions are given

;

A \{vh.ds^\dtl.v^=^.
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and S.mjvds is a maximum or minimum. It is evidently a

minimum, because a path of an indefinite length can always be
found for any particle of the system.

Cor. 1. Since ds = vdt we learn that S . mfv^dt is a mini-
mum, or the quantity of vis viva generated or expended during
any given time is a minimum.

Cor. 2. If the system consist of only one particle moving
on a surface, and no forces but the normal pressure act, then

fvds is a minimum : but v is a constant, therefore Jds is a

minimum, or the particle will describe the shortest curve line

that can be drawn on the surface between its positions at the

beginning and end of the time t.

If we compare the principle of least action with the

principles of the conservation of the motion of the centre of

gravity, of the conservation of areas, and of vis viva, we see

that this principle only serves to determine the equations of

motion, and is therefore comparatively useless since these

are found by much simpler means ; but the other principles,

which develope important properties, have the advantage of

furnishing three general integrals of the equations of motion,

which are in most problems the only integrals that can be
found.

Prop. To show that the calculation of the motion of a ma-
terial system may he made to depend upon the integration of a
single function,

204. We shall show this by proving a new dynamical
principle discovered by Sir. W. R. Hamilton and published
in the Philosophical Transactions, 1834.

We have seen. Art. 189, that the Principle of Virtual
Velocities leads us to the dynamical equation

Now it has been shown in Art. 186 that.
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is a perfect differential coefficient with respect to t for all the

forces which exist in nature ; viz. forces tending to the centre

of the particles of the material universe, whether fixed or

moveable. Let therefore the second side =2 {U -\-II)j H
being independent of t ; and let 2 T be the vis viva of the

system at the time t; T^, H^ the values of T and H when

Now if the initial circumstances of the motion be varied,

then H will vary, and so also will T and U: let B be the

symbol of these variations

;

/. BT=BU+SH

^ (dx ^dx dy ^ dy dz ^ dz

\dt dt dt dt dt dt

«-+S«^+Sm+«^^

and therefore 22.^IJsJ+JsJ

Now let the accumulation of the vis viva from the com-?

mencement to the termination of the time ^ be F;

.
•''-/>-©'-(S)"-(S''-

Then F is a function of the initial and final co-ordinates

of the material particles, and
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H^ being a function of the initial co-ordinates a, h, c

But when ^ = 0, 6F=0, hence

-S'-lS^^+S^^+f-^^-^'^^- w-

From this equation we obtain the following groups of

hV dx,

h^r'^^dt

BV dx,

' Bxr'^'df"
IV dy^

' Byr^dt'-
-

%. 'dt^

ZV dz,

Bzr'^^di
BV dz.

• Bzr'^^dt""
J

Second group,

8F da.

Bar ""'df
BV da.

Bar "^^df"

BV db. BV dh.

Bb^ "^'dt'

BV dc. BV dc,

Bcr-'"^W-
.

Lastly,

-cCTr'^t ,,,.

{A).

{B).

{C).
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The problem is therefore reduced to finding the function F,

which Sir W. R. Hamilton denominates the characteristic

function of the motion of a system. When V is calculated,

then, by eliminating ^from the equations [A)y {C),wg shall

have the Sn integrals of the first order of the equations of

motion by simply differentiating F. And by eliminating H
from the equations (5), ((7), we have the 3n final integrals

by simple difierentiation.

It may be observed that F must satisfy the two following

partial diflferential equations.

These equations famish the principal means of discovering the

form of the function F, and are of essential importance in

Sir W. E. Hamilton's Theory.

The equation (a) is denominated the law of varying
action.

205. "It has been shewn by Lagrange and others, in

treating of the motion of a system, that the variation SF
vanishes when the extreme co-ordinates and constant H are

given (Art. 203) : and they appear to have deduced from this

result only the principle which is called the law of least action:

namely, that if the particles of a system be imagined to move
from a given set of initial to a given set of final positions, not

as they do, nor even as they could move consistently with the

general dynamical laws, or differential equations of motion, but

so as not to violate any supposed geometrical connexions, nor

that one dynamical relation between velocities and configura-

tion which constitutes the law of vis viva : and if, moreover,

this geometrically imaginable, but dynamically impossible

motion, be made to differ infinitely little from the actual

manner of motion of the system, between the given extreme

positions, then the varied value of the definite integal called

action, or the accumulated vis viva of the system in the motion
thus imagined, will differ infinitely less from the actual value

of that integral.
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" But when this principle of least action, or," as Sir W. K.
Hamilton proposed to call it, " of stationary action, is applied

to the determination of the actual motion of a system, it serves

only to form, by the rules of the Calculus of Variations, the

differential equations of motion of the second order, which can
always be otherwise found."

In this, then, appears the excellence of this new principle

called the law of varying action, that we pass from an actual

motion to another motion dynamically possible, by varying
the extreme positions of the system and (in general) the

quantity H: but more especially that it serves to express,

by means of a single function, not the mere differential

equations of motion, but their intermediate and their final

integrals.

We hope that the slight sketch we have given of this

new principle will tempt our readers to consult the original

Memoirs in the Transactions of the Royal Society of London
for the years 1834, 1835, from which this notice has been
gathered.

EXAMPLES.

1. A uniform rod is moving on a horizontal table about
one extremity, and driving before it a particle of mass equal

to its own, which starts from rest indefinitely near to the fixed

extremity ; show that when the particle has described a dis-

tance r along the rod, its direction of motion makes with the

rod an angle

tan * ~.

^lr' + h''

2. A thin uniform smooth rod is balancing horizontally

about its middle point, which is fixed ; a uniform rod such a?

just to fit the base of the tube is placed end to end in a line

with the tube, and then shot into it with suth a horizontal
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velocity that its middle point shall only just reach that of the

tube, supposing the velocity of projection to be known, find

the angular velocity of the tube and rod at the moment of the

coincidence of their middle points.

Result, If m be the mass of the rod, m that of the tube,

and 2a, 2a their respective length, v the velocity of the rod's

projection, o) the required angular velocity, then

ma^ + m'a'^

'

3. A fine circular tube, carrying within it a heavy par-

ticle, is set revolving about a vertical diameter. Show that

the difference of the squares of the absolute velocities of the

particle at any two given points of the tube equidistant from
the axis is the same for all initial velocities of the particle and
tube.

4. A screw of Archimedes is capable of turning freely

about its axis, which is fixed in a vertical position : a heavy
particle is' placed at the top of the tube and runs down
through it ; determine the whole angular velocity communi-
cated to the screw.

Result, Let n be the ratio of the mass of the screw to

that of the particle, a = the angle the tangent to the screw

makes with the horizon, h the height descended by the par-

ticle. Then the angular velocity generated is

V:
2gh cos^

[m-\- 1). (71 + sin'' a)
*

5. A cone of mass m and vertical angle 2a can move
freely about it axis, and has a fine smooth groove cut along its

surface so as to make a constant angle ^ with the generating

lines of the cone. A heavy particle of mass P moves along

the groove under the action of gravity, the system being

initially at rest with the particle at a distance c from the ver-

tex. Show that if 6 be the angle through which the cone has

E.D. 19
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turned when the particle is at any distance r from the vertex,

then

rf4-Pr^sin''a ,,„ ,,,^

h being th« radius of gyration of the cone about its axis.

6. Two equal beams connected by a hinge at their

centres of gravity so as to form an X are placed symmetrically

on two smooth pegs in the same horizontal line, the distance

between which is h. Show that, if the beams be perpen-

dicular to each other at the commencement of the motion, the

velocity of their centre of gravity when in the line joining the

pegs is equal to a/ i^^ii j where h is the radius of gyration

of either beam about a line perpendicular to it through its

centre of gravity.

7. A lamina of any form rolls on a perfectly rough
straight line under the action of no forces

;
prove that the ve-

locity V of the centre of gravity G is given by

r'-\-k^'

where r is the distance of G from the point of contact, and k
is the radius of gyration of the body about an axis through G
perpendicular to its plane, and c is some constant.

8. If an elastic string, whose natural length is that of

a uniform rod, be attached to the rod at both ends and
suspended by the middle point, prove by means of vis viva

that the rod will sink until the strings are inclined to the

horizon at an angle 0, which satisfies the equation

cot ^ — cot - — w = 0,

where the tension of the string, when stretched to double its

length, is n times the weight.



EXAMPLES. ^91

If the string "be suspended by a point, not in tHe middle,

write down the equation of vis viva.

9. Two smooth equal beads which can slide on a wire
bent into the form of an ellipse are placed at rest at the

opposite extremities of any diameter. Supposing the ellipse

to be freely moveable, and that the particles attract each
other with a force which varies inversely as the square of the

distance, determine the angular velocity of the ellipse at the

moment when the beads, are at the opposite extremities of

the minor axis.

10. A circular wire ring, carrying a small bead, lies on a
smooth horizontal table ; an elastic thread the natural length

of which is less than the diameter of the ring, has one end
attached to the bead and the other to a point in the wire

;

the bead is placed initially so that the thread coincides very
nearly with a diameter of the ring ; find the vis viva of the

system when the string has contracted to its original length.

11. A tube of given length is formed into a cui-ve having
its extremities at two fixed points in a horizontal line, a
uniform chain of the same length as the tube is placed en-

tirely within it and then slightly disturbed, determine the

form of the tube that the velocity of the chain when it quits

the tube may be as great as possible.

12. A beam whose mass is M is fixed at one end (7,

about which it can move freely in a smooth horizontal plane,

and a string with a mass M' at its extremity is attached to

the other end of the beam ; if the whole be set in motion on

the horizontal plane, so that the string shall remain constantly

stretched, determine the motion.

13. A chain fixed at two points to a vertical axis re-

volves uniformly about it, find the differential equation of the

cm-ve which it forms by the condition that the function which
expresses the total work of the forces shall be a maximum,
and show how the arbiti-ary constants are to be determined.

19—2
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14. A small insect moves along a uniform bar of mass
equal to itself, and length 2a, the extremities of which are

constrained to remain on the circumference of a fixed circle,

2a
whose radius is -j= . Supposing the insect to start from the

middle point of the bar, and its velocity relatively to the bar

to be uniform and equal to F; prove that the bar in time t

will turn through an angle

—= tan — .

Va «

15. A heavy circular disc is revolving in a horizontal

plane about its centre which is fixed. An insect walks from
the centre uniformly along a certain radius and then flies

away. Determine the whole motion.

16. The extremities of a rigid rod are constrained to

move on a smooth fixed wire in the form of a curve on a

horizontal plane, determine the point from which a small

animal must begin to move along the rod with a given rela-

tive velocity, in order that the initial angular velocity thus

communicated to the rod may be the greatest possible.

17. A uniform circular disc moveable about its centre in

its own plane (which is horizontal) has a fine groove in it cut

along a radius, and is set rotating. A small rocket whose

weight is - the weight of the disc is placed at the inner ex-

tremity of the groove and discharged ; and when it has left

the groove, the same is done with another equal rocket, and so

on. Find the angular velocity after n of these operations,

and if n be indefinitely increased, find the limiting value of

the same.

18. A straight tube of given length is capable of turning

freely about one extremity in a horizontal plane, two equal

particles are placed at difierent points within it at rest, an
angular velocity is given to the system, determine the velocity

of each particle on leaving the tube.
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19. A rigid body is rotating about an axis through its

centre of gravity, when a certain point of the body becomes
suddenly fixed, the axis being simultaneously set free ; find

the equations of the new instantaneous axis ; and prove that,

if it be parallel to the originally fixed axis, the point must
lie in the line represented by the equations

d^Jx + V^my + c\z — 0,

^ ^ I ^ ' m ^ ^ n

the principal axes through the centre of gravity being taken

as axes of co-ordinates, a, 5, c the radii of gyration about

these lines, and I, m, n the direction-cosines of the originally

fixed axis referred to them.

20. A circular disc is revolving in its own plane about

its centre ; if a point in the circumference become fixed, find

the new angular velocity,

21. Show how to deduce the equation of vis viva

T=2U+C from the equations of Art. 198.



CHAPTER VIII.

ON IMPULSIVE FORCES.

Sect. I. General Principles,

206. In order to understand the nature of an impulse,

let us first take the simpler case of motion in two dimensions.

If a force F act on a body of mass m always in the same
direction, the equation of motion of the centre of gravity is

dv__F

where v is the velocity of the centre of gravity at the time t.

Let T be the interval during which the force acts, and let v, v

be the velocities at the beginning and end of the interval.

Then

\^Fdt

v'-vJ^ (1).
m,

Similarly if j) be the perpendicular from the centre of

gravity on the line of action of i^, we have

d(d _ Fp
dt ~ mJc*

'

where « is the angular velocity at the time t. Let <», eo' be
the angular velocities of the body at the beginning and end
of the interval T, Then

rFpdt
Jo-'"=^- (2)'
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Now suppose the force F to increase without limit, while

the interval T decreases without limit. Then I Fdt may

have a finite limit. Let this limit be P. Then the equation

(1) becomes

v'-v = - (3).

The velocity in the interval T has increased or decreased

from V to v'. Supposing the velocity to have remained finite,

let V be the greatest value of the velocity during this in-

terval. Then the space described is less than VT. But in

the limit this vanishes. Hence the centre of gravity has not

moved during the action of the force F. It has not had
time to move, but its velocity is suddenly changed from

V to v\

In the same way the angle turned through by the body
in the time T is zero. Hence p will not be altered during

the action of the force. The equation (2) then becomes

V
ft)' — 0) = —

Fdt
J

(4).

Pp

These two equations completely determine the change in

the motion of the body due to the action of the force F,

207. Such a force is called an impulse. It may be de-

fined as the limit of a force which is infinitely great, but acts

only during an infinitely short time. There are of course no
such forces in nature, but there are forces which are very

great, and act only during a very short time. The blow of

a hammer is a force of this kind. They may be treated as

if they were impulses, and the results will be more or less

correct according to the magnitude of the force and the short-

ness of the time of action. They may also be treated as if
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they were finite forces, and the displacement of the body
during the time of action of the force may be found.

The quantity P may be taken as the measure of the

force. An impulsive force is measured by the whole mo-
mentum generated by the impulse.

208. Prop. In determining the effect of an impulse on a
hody^ the effect of all finite forces which act on the body at the

same time may he omitted.

For let a finite force / act on a body at the same time

as an impulsive force F, Then as before we have

j Fdt
j fdt

m m

^P fT
mm'

But in the limit/T vanishes. Similarly the force/ may
be omitted in the equation of moments.

209. Prop. 2h obtain the general equations of motion

of a system acted on hy any number of impulses at once.

Let w, V, w, u\ v\ w be the velocities of a particle of

mass m parallel to the axes just before and just after the

action of the impulses. Let X', Y\ Z' be the resolved parts

of the impulse on m parallel to the axes.

Taking the notation of Chap. II. we have the equation

or integrating

2w --1-2 = XmX,

2w [u —u)= 2m I Xdt
•^

= SmZ' (1).
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Similarly we have the equations

tm {v' - v)=XmY' (2),

Xm{w'-'w) = tmZ' (3).

Again the equation

becomes on integration

or taken between limits,

2m {x {v' -v)-y {u'-u)] = %m [xY' -yX') (4),

and the other two equations become

%m{y [w' -w) -z {v' -v)]=%m i^Z' ^ zY') (5),

tm{z(u - u) -X {w -w)]= tm {zX' -xZ') (6).

In all the following investigations it will be found con-
venient to use accented letters to denote the states of motion
after impact which correspond to those denoted by the same
letters unaccented before the action of the impulse.

210. Prop. To prove the jprinciple of the conservation

of the centre ofgravity for a system exited on by any impulses.

This general principle may be deduced from the equations

obtained in the last article. But they may also be easily

obtained from the definition of an impulsive force. Let F
be any finite force acting on a body during an interval of

time T. The motion of the centre of gravity G is the same
as if the whole force acted on the whole mass collected at G.
If this be true for all values of F and T, it will be true when
F is infinitely great and T infinitely small. The same rea-

soning will apply if there be more than one impulse acting

on the body at the same moment.
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It may be shown in the same way that the motion round
the centre of gravity is the same as if that point was fixed.

It follows from this principle that if a system of bodies

be in motion, the motion of the common centre of gravity of

the whole system is not in any way affected by any explosions

or impacts which may take place between the bodies.

Sect. II. Motion of a Single Body acted on hy any
Impulses.

211. Prop. A hody in motion about a fixed axis is acted

on hy any impulsive forces. It is required to find the pressures

on the axis.

Let the fixed axis be taken as the axis of z^ let x, y, z be
the co-ordinates of any particle m of the body u, v, w, u, v, w
its velocities parallel to the axes just before and just after the

impulses. Let X, F, Z be the impressed moving impulses on
this particle parallel to the axes. Also let «, &)' be the angular

velocities of the body just before and after the impulses.

The impulsive pressure on the axis can be reduced to two
forces acting at any two points on the axis. Let the ordi-

nates of these points be a and a. Let JF, G^ H^ F\ G\ H'
be the resolved parts of the impulses of the axis on the body
at these points.

Then we have the following equations of motion

:

tX+F^F' = tm{u-u)
= — Smy . {(CO — ft))

=:-if.^.(a,'-ft,) (1),

since w' = — yo) and u = — yto,

Similarly, we have

tY+a->tG' = tm{v'-v)

= + Xmic (ft)' - ft)) (2),

= 4-lf^(ft)' — ft)),

since v = xw' and v — xw.

Also tZ-tH + ff' = (3).
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So also taking moments about the axes

S {i/Z- zY)^Ga~- G'a = tm [y [w' -w)-z {v' - v)

]

= — {Xmxz) (g)' — 0)) (4).

Similarly,

2 {zX-xZ)-\-Fa + F'a' = tm {z [u'-^u) -x{w'-^ w)],

==-{tmyz) (© -o)) (5),

t{xY-yX) =Sm(ic* + 3r')(«'-a>) (6).

These six equations suffice to determine ©', F, F\ G, G'
and the sum H^ H' of the two pressures along the axis.

212. These equations can be greatly simplified, first by
taking the plane of xz to contain the centre of gravity of the

body, and secondly , when possible, so choosing the origin that

the axis of s is a principal axis in the body at that point.

The equations then become

t[yZ^zY)-Ga-G'a' = 0,

2 (zX- xZ) + i^a 4- F'a = 0,

2 {xY-yX) = 2m (ic* + y') . (o)' - 6>).

213. When the fixed axis is given and the body can be

so struck that there is no impulsive pressure on the axis, any

point in the line of action of the force is called a centre of
percussion.

When the line of action of the blow is given, the axis

about which the body begins to turn is called the axis of
spontaneous rotation. It obviously coincides with the position

of the fixed axis in the first case.



300 IMPULSIVE FORCES.

214. Prop. A hody is capable of turning freely about a
fixed axis. To determine the conditions that there shall be a
centre ofpercussion and to find its position.

Take the fixed axis as the axis of z, and let the plane of

xz pass through the centre of gravity of the body. Let X,
F, Z be the resolved parts of the impulse, and let ^, 97, f be
the co-ordinates of any point in its line of action. Let M. Tc^

be the moment of inertia of the body about the fixed axis.

Then since ^ = 0, the equations of motion are

X=0 1

Y=Mx{u»'^a>) \ (1),

Z=0 I

vjZ— ?F= — (o)' — 0)) 'tmxz
1

fZ- fZ=- (o)' - a>) %nyz [ (2).

The impulsive pressures on the fixed axes are omitted because

by hypothesis they do not exist.

215. From these equations we may deduce the follow-

ing conditions.

First, From (1) we see that X= 0, Z=0, and therefore

the force must act perpendicular to the plane containing the

axis and the centre of gravity.

Secondly. Substituting from (1) in the first two equations

of (2) we have Smys = 0, and f=^r=-. Since the origin

may be taken anywhere in the axis, let it be so chosen that

^Tnxz = 0. Then the axis of 2 is a principal axis at this

point and ^=0. Hence the fixed axis must be a principal

axis at the point where a plane passing through the line of

action of the blow perpendicular to the axis cuts the axis.

Thirdly, The condition that there may be a centre of

percussion, is, that the axis must be a principal axis of the

body at some point in its length. See Art. 15.

Fourthly, Substituting from (1) in the last equation of

(2), we have f = -^. But, by Art. 37, this is the equation
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to determine the centre of oscillation of the hodj about the
fixed axis treated as an axis of suspension. Hence the cen-
tres of percussion lie in the plane drawn through the centre

of oscillation parallel to the fixed axis. If the fixed axis
be parallel to a principal axis at the centre of gravity, the
centre of oscillation coincides with a centre of percussion.

216. These results may be represented geometrically by
reference to the momental ellipsoid at the centre of gravity.

Take any central section of this ellipsoid, and let Gy, Gz
be the principal diameters of the section, and GP the diametral

line. Draw a plane Gxz through Gz either of these prin-

cipal diameters, perpendicular to Gy the other. Then by the

third condition, any straight line in the plane Gxz parallel to

Gz may be taken as an axis of rotation. See Art. 15.

By the first condition the line of action of the blow must
be parallel to Gy the other principal diameter, and by the

fourth condition the product of its distance from the plane

oi yz into tjie distance of the axis of rotation from the same
plane is equal to the square of the radius of gyration about

Gz. Lastly, the line of action of the blow must pass through

the diametral line GP) for let the equation to the momental
ellipsoid be

U=Aa^ + %'+ Cz'-lEzx-'iFxy - e^ = 0.

The equations to the diametral line of the plane of yz
are

T~r-= Cz-Ex^O )

2 dz

The co-ordinates of the point of application of the blow

C E
are (since (7=lfA;'),a; = -^, ^ =^» and y may have any

value. These co-ordinates evidently satisfy the above equa-

tion. Hence the line of action of the blow passes through

the diametral line.
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The ellipsoid of gyration at the centre of gravity ma^
be used in a similar manner to interpret the results of Art.

215. Construct any ellipsoid confocal with the ellipsoid of

gyration. Then by the second condition a normal to this

ellipsoid at any point P may be an axis of rotation.

By the second condition, the line of action of the blow-

must lie in the tangent plane at P, see Art. 21. Draw GL
a perpendicular from the centre G on the tangent plane at P,

and join PL. Then by the first condition and Art. 22, the line

of action of the blow is perpendicular to PL. Let it cut PL
in §, then by the fourth condition PL. QL = F, where h is the

radius of gyration about GL. If the " subsidiary" ellipsoid

le the ellipsoid of gyration, then k= GL (Art. 12), and
therefore the sphere described on PQ as diameter passes

through G ; hence GP, GQ are at right angles.

217. There is one case of rotation in which the results

become so simple as to merit a particular discussion. This is

when the fixed axis of rotation is perpendicular to a principal

plane at the centre of gravity, and when the body is acted

on only by a single impulse whose line of action is in the

principal plane and perpendicular to the plane containing the

axis of rotation and the centre of gravity.

Let the fixed axis of rotation cut the principal plane in

the point 8, then, as proved in Art. 19, it is a principal axis

in the body at 8. Let 8 be one of the points at which the

axis of rotation is fixed, and let 8' be any other, where
88' = a. Let the impulse B act at some point P in the

straight line 8G where GP=x. Also let 8G^h. Then
the equations of Art. 212 become

R+G+G'^Mh{co'-<D)

G'a^O

H {x-hh) =M {k' + h') {co' - a>)
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Hence o) — o) = ^

G = B

M{Ic' + h')

hx-Jc'

k' + h'

The resultant impulsive action at the axis of rotation

therefore passes through the point S and is perpendicular to

the straight line SGP,

The impulsive action G vanishes when a: = -7- , hence a

centre of percussion always exists and coincides with the

centre of oscillation.

218. When a free body turning with any angular velocity

about an instantaneous axis strikes against an obstacle, it

would seem that the effect of the impact is greatest if it be
made at the centre of percussion; for in this case, the

obstacle receives the whole motion of the body ; whereas if

the blow be struck in any other point, a part of the motion of

the body will be employed in endeavouring to continue the

motion. But this is not necessarily true.

219. Prop. A free lamina ofanyform is turning in its

own plane about an instantaneous centre of rotation S and im-

pinges on an obstacle at P, situated in the straight line joining

the centre of gravity G to S. To find the point P when the

magnitude of the blow is a maximum.

The following investigation will also apply if the body

instead of being a lamina, be such as that described in

Art. 217.

Firstf let the obstacle Pbe a fixed point.

Let GP=x, and let R be the force of the blow. Let

SG = h, and let w, o)' be the angular velocities about the

centre of gravity before and after the impact. Then hco is the

linear velocity of G just before the impact ; let v be its linear

velocity just after the impact.
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We have the equations

Rx ^
— 0) =

Mk'

M
(i)>

and supposing the point of impact to be reduced to rest,

V +XO} =0 (2]

Substituting for o)' and v' from (1) in equation (2), we ge

x-^h
R^M(o,¥

x'-]-k^'

This is to be made a maximum. Equating to zero ij

differential coefficient with respect to x, we get

(3);fc*+2Aa;-^* =

X=-h±NY+ h^

One of these values of x is positive and the other negative

Both these correspond to maanmum points of percussion, but

opposite in direction. Thus there is a point F with which
the body strikes in front not only more forcibly than with

the centre of percussion itself, but also more forcibly than

with any other point ; and at the same time there is another

point F' with which the body strikes with the greatest pos-

sible force, but it does so in the rear of its own translation

through space*.

Let k' be the radius of gyration about the instantaneous

axis of rotation, then

h' + k' = Jc"8indh + x==SF;

.-. 8F=±Jc\

Hence the two points P, F' are at equal distances from S.

• Poinsot, Sur la percussion des corps, Liouville's /ot*?*»iaZ, 1857 ; translated

in the Annals of Philosophy, 1858.
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Also if be the centre of oscillation with respect to S as

a centre of suspension, SG, SO = k'^;

.-. SP'=S.G.SO.

Since GP^ GP' are the roots of the quadratic equation (3),

/. GP'-GP^m
GP.GP'^ieV

the latter equation shows that if P be made a point of sus-

pension, P' is the corresponding centre of oscillation. It is

easy to see that PP is harmonically divided in G and 0.

220. Secondly^ let the obstacle he a free particle ofmass m.

Then, besides the equations (1), we have the equation

of motion of the particle m. Let V be its velocity after

impact,

A F' = :?
(4).

The point of impact in the two bodies will have after

impact the same velocity, hence instead of equation (2) we
have

F' = i?' +W (5).

Substituting for &>', v\ V from equations (1) and (4) in

equation (5), we get

D nr 72 m{x + h)

{M+m) F+ wia^

This is to be made a maximum. Equating to zero its

differential coefficient with respect to Xj we get

x'-\-2hx==l''(l+^] (6);

= -'h±/^h' + k'(l+—
imj

This point coincides with that found when the obstacle

was fixed, only when m is infinite. To find when it coincides

with the centre of oscillation, we must put k"^ = xh. This

K. D. 20
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srives — =—5— , or if l^x + hloe the length of the simple
^ m h

equivalent pendulum, — ^T'
\

Since F' = — , it is evident that when j5 is a maximumm
V is a maximum. Hence the two points found by equation

(6) might be called the centres of greatest communicated

velocity.

221. There are other singular points in a moving body
whose positions may be found ; thus we might inquire at ^vhat

point a body must impinge againt a fixed obstacle, that Jirst

the linear velocity of the centre of gravity might be a maxi-

mum, or secondly, that the angular velocity might be a

maximum. These points, respectively, have been called by
Poinsot the centres of maximum Eeflexion and Conversion.

Referring to equations (1) in Art. 219, we see that when v'

is a maximum R is either a maximum or a minimum, and

hence it may be shewn that the first point coincides with the 1

point of greatest impact. When to' is a maximum, we have

to make
Rx

(o — jrp = maximum.

Substituting for R, this gives

a,2_2|'cc-F = (7).

If be the centre of oscillation, we have GO = ^ . Let
h

this length be represented by A'. Then the equation (7) becomes

x'-^h'x-l^^^i (8).

The roots of this equation are the same functions of h'

and h that those of equation (3) are of^ and Tc, except

that the signs are opposite. Now S and are on opposite

sides of G, hence the positions of the two centres of maximum
Conversion bear to and G the same relation that the

positions of the two centres of maximum Eeflexion do to S
and G. If the point of suspension be changed from S to 0,

the positions of the centres of maximum Reflexion and Con-
version are interchanged.
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222. Peop. To determine the general equations of motion

of a tody about a fixed jpoint under the action of given im-
pulses.

Let tlie fixed point be taken as origin, and let x, y, z be the
co-ordinates of a particle m. Let w, -y, w, u', v\ w' be the velo-

cities of this particle parallel to the axes before and after

impact, and let X, Y, Z be the impulses on m, and L, M, N
the moments of all the impulses on the body about the axes
of X, y, z. And let F, G, H be the impulsive pressures of the

fixed point on the body.

By D'Alembert's Principle the equations of motion are

tm{x{v' -v) -y {u' -u)} = N (1),

and two similar equations,

tm{w-w)=^tZ+E (2),

and two other similar equations.

Let w^, Wy^ w^ be the angular velocities generated ly the

impulses about the axes of co-ordinates.

Then ' ii —u — (OyZ— to^y 1

v' — V = G}Jx — cajz \ (3).

&c. = &c. J

Substituting, we get

2m {{x'' + y^) a)J - zxaj - zycoj} = K
Let Aj Bj C be the moments about the axes. Then we

have

Ca>/ — {%mzx) (oj — (Zmzy) mj =i\^, 1

similarly,
^

I

Aa)J— (^mxy) (oj — (tm^z) coj = L
^

^
''•

BmJ — (^rnyz) (oj — (^myx) coJ =Mj
These three equations will sufiice to determine the values

of coj, cOy, o)/. These being added to the angular velocities

before the impulse, the initial motion of the body after the

impulse is found.
20—2
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It is to be observed that these equations leave the axes

of reference undetermined. They should be so chosen that

the values of A, ^mxy, &c. may be most easily found. If

the positions of the principal axes at the fixed point are

known they will in general be found the most suitable.

In that case the equations reduce to the simple form

B<o^=m\ (5).

The values of w^,', »/, ««' being known, we can find the

pressures on the fixed point. For one of the equations (2) be-

comes by substitution from (3)

= jif.(a,;i-a,;y) (6), I
where M is the mass of the body, and 5, y , i the co-ordinates

of the centre of gravity. Similarly the other equations be-

come

223, If the body be free, the motion round the centre of
gravity will be the same as if that point were fixed. Hence
the axes being any three straight lines meeting at the centre

of gravity, the angular velocities of the body may still be
found by the equations (4) or (5). The motion of the centre

of gravity may be found from (2). Let u, v, w, u, v\ w' be
the resolved parts of the velocities of the centre of gravity

before and after the impulses, and let if be the whole mass.
Then these equations become

1

w' "W tz
" M '

u' — u
tx

v' — V
lY

~ M •
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224. Ex. A portion of a parabola hounded hy an ordi-

nate FN, the axis ON, and the curve OF, has its vertex

fixed, A hlow F is given to it perpendicular to its plane at the

other extremity of the curved boundary. Supposing it at rest

before the blow, find the initial motion.

Let the equation to the parabola be

'if = 4aa7.

Then Sm xz = 0, ^myz — 0.

Let fjb be the mass of a unit of area, and M the whole

mass

and ^mxy =fi \\xydxdy = f^l^^ ^
i _

(x=0
\x = c

=

1/

= 2/jl Iax^dx = - fjuac^

= lf
v:ac

4:ac

where 0N= C,

Also A = - fi
I
y^dx = —-fiah^ = M.

o Jq 15 o

B— iJbl x^ydx = -fjuah^ = iW —

;

and the equations are

2 /—
A(D^ - - a^(ay—"F, 2 Nac

2
B<siy — - a&(o^ = Pc

whence a>, ^v "^^7 ^® easily found.
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And the pressures on the fixed point may he found from

the equations

^=0, (? = 0,

E^ M[o)^y - G)^. 4
The axis about which the body hegins to turn makes an

angle with Ox, whose tangent is

tan (9 = -^,

and the initial angular velocity = V©/ + o)/.

But the body will not continue to rotate about this axis

unless it be also a principal axis.

225. Prop. A hody at rest having one point fixed is acted

on hy an impulsive couple G, to determine the initial motion.

Take the principal axes at the fixed point as axes of re-

ference. The equations of motion are

Ao)^ = L, B(Oy = if, Co)^ = N,

wheiQ L' + M' +N^^GK

Hence the equations to the initial axis of rotation are

L M~ N w.

The equation to the plane of the couple is

Li-\-M'n + N^= {2).

Let the momental ellipsoid

Aai'+ By^+Cz^ = e*

be constructed. Then (2) is the diametral plane of the straight

line (1). Hence the initial axis of rotation is the diametral

line of the plane of the impulsive couple.
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It follows that the initial axis of rotation is never per-
pendicular to the plane of the couple, except when that plane
is a principal plane of the body at the fixed point.

Let the area of the section of the ellipsoid formed by the
plane of the couple G be V, Then

ABG'V^ \A ' B a) G''

Let T be the vis viva of the body after impact, then, by
Art. 194,

T=Aco: + Bco,'+Cco,'

~'A'^ B '^ C'

G' ABC
TV'

= a constant.

We \ti(Sw by Art. 123 or 192, if the body be left to itself

after the impulsive force has ceased to act, that the vis viva

T will be constant throughout the subsequent motion.

226. Prop. To show that we may take moments ahout

the initial axis of rotation as if it were a fixed axis.

Let ?, w, n be the direction-cosines of the initial axis of

rotation ; let / be the moment of inertia, and O the angular

velocity of the body about it. Let G be the moment of

the forces about the same axis. Then

Hence the equations of motion become

Aia^L, Bma = M, Cnn =K
Multiplying these by ?, m, w, and adding, we get

(Ar + Bm" + On') D. = Ll-i- Mm+ Cm,

or IM=G'.
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227. Prop. A hody at rest teing acted on hy any iin^

pulses, it is required to find the condition that the resulting

motion may he one of rotation only.

It has been proved that the motion of any body can
always be represented by a motion of rotation about some
axis, and a motion of translation in the direction of the axis.

The condition that the motion may be one of rotation only is,

by Art. 100,

u(i)„ + V ft>y + w? ft>« = 0.

But substituting for u\ &c., w^.', &c., their values in terms

of the forces given in Arts. 222 and 223, this becomes

LtX MtY NtZ ^

This condition is necessary, but not sufficient. It is also

necessary that Z, M, N do not all vanish.

228. Prop. Two bodies impinge on each other, to ex-

plain the nature of the action that takes place between them.

When two spheres of any hard material impinge on each

other, they appear to separate almost immediately, and a

finite change of velocity is generated in each by their mutual
action. This we have seen is the characteristic of an im-
pulsive force. Let the centres of the spheres be moving before

impact in the same straight line with velocities u, v. Then
after impact they will continue to move in the same straight

line, and let u, v be the velocities. Let m, m be the masses
of the spheres, R the action between them. Then we have,

by Art. 209,

R^
u —u — m

R
m

(1).

These equations are not sufficient to determine the three

quantities u, v, R. To obtain a third equation we must
consider what takes place during the impact.

Each of the balls will be slightly compressed by the other.
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There will then obviously be two cases according as the

bodies tend or do not tend to return to their original shape.

In the first case they are said to be inelastic, in the second,

elastic.

First, let the bodies be inelastic. While the bodies are

being compressed, the motion is being propagated through
their masses, but we may suppose that after a short time T,

both the bodies take up new shapes and no further action takes

place between them. At this moment the two bodies are

moving with the same velocity. The assumptions made are,

first that the change of shape and structure is so small that

the effect in altering the position of the centre of gravity,

and in altering the moments of inertia of the body, may be
neglected, and secondly, that T is so small that the motion

of the body in that time may be neglected. If for any body
these assumptions are not true, the effect of impact must
be deduced from the equations of the second order.

We have then just after the impact

w' = v'... (2).

This gives

whence

E=^^{u-v) (3),

U — 7- (4:).

Secondly, let the bodies be elastic. Then there will be a

force of restitution as well as a force of compression. Let R
be the whole action between the balls, and R^ the action that

would have occurred if there had been no force of restitution.

The magnitude of R must be found by experiment. This

may be done by observing the values of u and v, and thus

determining the whole action by means of equations (1).

These experiments were made in the first instance by Newton,

and the result was that -^ is a constant ratio depending on
"'0

the material of the balls. This result has been confirmed by
subsequent experiments. ^ •
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I7->

Let the constant ratio -^ = 1 + e. Then e is called the

common elasticity of the substances impinging. It is always
less than nnity. If e = l, the substances are said to be «
perfectly elastic. H

The value of e being supposed known the velocities after

impact may be easily found. The action must be first cal-

culated as if the bodies were inelastic, then the whole value

of B may be found by multiplying this result by 1 + e. This
gives

m-\-m

whence u and v' may be easily found by equations (1).

229. Ex. 1. A string is wound round the circumference

of a circular reel, and the free end is attached to a fixed point.

The reel is then lifted up and let fall so that at the mwnent
when the string becomes tight it is vertical, and a tangent to the

reel. The whole motion heing supposed to take place in one

plane, determine the effect of the impulse. M\

The reel in the first instance falls vertically without rota-

tion. Let V be the velocity of the centre at the moment when
the string becomes tight ; v, (o the velocity of the centre and
the angular velocity just after the impulse. Let T be the

impulsive tension, mU the moment of inertia of the reel about
its centre of gravity, a its radius.

The equations of motion are

Tv-v = (1),m ^

""^ (')•

At the moment of greatest compression the part of the

reel in contact with the string has no velocity.

Hence 2?'-aa)' = • (3).
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Substituting from (1) and (2), we have

^=-''^ w-

2
1

If the reel be a homogeneous cylinder, W= — , and T=-mv,

In this case

,2 , , 2v
V =- V, and o) =—

.

3 ' 3 a

This wiU be the resulting motion if the string and reel

be inelastic. If they have a common elasticity e, then we
know that the correct value of T is

T=^mv{l+e).

Substituting this in equations (1) and (2), we have

1 2 V
v=-{2-e) V, and o)' = - - (1+ e).

O O (Z

230. Ex- 2. An inelastic spherical hall, moving without

rotation on a smooth horizontal plane, impinges with velocity v

against a rough vertical wall whose coefficient of friction is /x.

The line of motion of the centre of gravity before incidence

making an angle a with the normal to the wall, determine the

motion after impact.

Let v^, v^ be the velocities of the centre of the ball just

before and just after impact resolved along the wall, v^^ v'

the velocities resolved perpendicular to the wall in such

directions that v^ and Vy are positive. Then v„=^vs,moL^

Vy = v cos a ; let (o be the angular velocity of the ball, and

let m be its mass, and a its radius.

Let R be the normal blow, then the impulsive friction

cannot be greater than jiR, Let the friction be F,
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The equations of motion are

t^;-i?.=-~ (1),

<-".=-§ (2).

'"=rf (')

At the moment of greatest compression the velocity of

the point of the ball in contact with the wall must be zero.

Hence we have

< = o| (^^'

This gives

B = mv cos a 1

J,
' k' . \ (3),

whence vj and »' can be found.

This result is only true provided F is not greater than

fiB, or

-2—72 tan a not greater than /a,

2
or - tan a not greater than /*.

If a be so great that this inequality does not hold, we
must have F=fiB, The equations (2) now reduce to the

single one

< = (4),

because it is no longer true that the sliding motion of the

ball along the wall is destroyed. This equation gives the

same value of R as before, and

.*, F— fimv cosa (5),

whence vJ and co' can be found. .
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231. Ex. 3. A cricket-ball is set rotating ahout a Tiori-

zontal axis in the vertical plane of motion with an angular
velocity co^. Supposing that when it strikes the ground the

centre is moving with velocity V in a direction making an angle

a with the horizon, find the subsequent motion.

Take the normal to tlie ground at the point where the
ball touches as the axis of s, and let the axis of x be in the

plane of motion of the ball before impact. Let o)/, q)^', <o^

be the angular velocities just after impact of the ball about
the diameters parallel to the axes. Let u\ v\ w be the re-

solved parts of the velocities of the centre. Let Z be the

normal reaction of the ground, X, Fthe frictional impulsive

actions, estimated positively in the positive directions of the

axes. Let m be the mass of the ball.

The equations of motion are

Ya
1

Xa .

"«= mk'

""^O .

u — Fcos a =—m

v-^I
m

to + Fsin a = —
mj

(1).

(2).

The geometrical equations are

w=0.
(3).
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These hold at the moment of greatest compression

Solving these, we get

X=— a . 7.2 '^^C0S«,

Z=mV sin a.

Let e be the frictional and e the normal elasticity. Then
these values of X, Y, Z must be multiplied respectively by
1 + e, 1 + e', and 1 + e.

By substituting in (1) and (2), we get

, Fa cos a ,^ » , aiaj^ ,^ ,.

Wg' =0, «?' = eF sin a.

It appears from these equations that unless a)^ = the ball

will not move in the same vertical plane after impact as

before. Let 6 be the angle made by the two vertical planes

v' 2
of motion. Then tan = —,, and after putting h^ = -a^, we get

u o

. a 2aft), 1 + e
tan 6 — —

Fcos a' 5 — 2e'

232. Ex. 4. A perfectly rough horizontal table is revolving

about a vertical axis with a uniform angular velocity H, and
a cylinder is gently placed with its plane base on the table.

It is required to determine the initial motion.

There will evidently be an impulsive friction between
the base of the cylinder and the table, and since every point

of the base touches the perfectly rough plane, there can be
no initial rotation about a vertical axis. The cylinder will

begin to twm. about a tangent to some unknown point of the

circumference of the base. Let this point be denoted by P.

It is evident that the resultant impulsive pressure on the

plane and the resultant impulsive friction must act through
the point P. Since there is no initial angular velocity about
the axis of the cylinder, the resultant friction must act through
the centre C of the base.
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Let R "be the normal reaction at P, and let jP be the

resultant friction which acts along the radius CP.

Let ft) be the initial angular velocity about the tangent at

P, and let w and v be the resolved parts of the initial velocity

of the centre of gravity G along and perpendicular to GP.

Let the vertical axis about which the table is turning

cut the table in G, and let OG=c, Also let the unknown
radius CP make an angle 6 with CG, so that the angle

GCP=6,

Let Ji = GG and a = GP, and let Mh^ be the moment
of inertia of the cylinder about any horizontal axis through G.

Then the dynamical equations are

Mu = F,

Mv=R,

The initial motion of the point P of the cylinder is the

same as that of the point P of the table. The velocity of the

point P of the cylinder is = m — Aft) directed along the radius

GP. The velocity of the point P of the table is = O. OP
directed along a line perpendicular to GP, Hence the radius

GP is perpendicular to GP, and therefore the axis about

which the cylinder begins to turn is the tangent drawn from

to the circumference of the base. Also since GP= c sin 6,

we have
% — Aft) = --csin^f2,

Again, since the point P has no vertical motion,

t?— aft) = 0.

These five equations will suffice to determine w, v, o),

F and R. Eliminating, we get

ft) ch sin 6

X2 k^ + h^ + a^

This determines the initial angular velocity of the cy-

linder.
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Sect. III. The Motion of a System of Bodies acted on hy —
any Impulses,

233. If it be required to determine the motion of a system

of bodies acted ou by any impulses, we may proceed by M
writing down the equations of motion of each body sepa- |
rately. These equations will obviously contain the mutual

reactions of the bodies that compose the system. These un-

known reactions must be eliminated before we can proceed to

the solution of the equations. In certain cases we may evade

this elimination, and obtain an equation free from the unknown
reactions in the following manner. M

234. Prop. To extend the principle of the conservation

of areas to the case of a system of bodies acted on hy impulses, fl

Let any fixed plane be taken as the plane of a?y, and any
fixed point in it as origin. Let v^., Vy, v„ v^,', Vy, v^ be the re-

solved parts of the velocities of any particle m of the system

before and after the action of the impulses. Let N be the

moment of the impulsive forces about the axis of z. Then
we have the equation

2w [x {vj -Vy)-y {vj - O} = JSf,

But the expression on the left-hand side is the difference

between the area conserved by the system in two units of

time before and after the action of the impulses. Hence we
have, generally

area conserved ) ( area conserved If moment of

after any impulse j [before the impulse J [ the impulse.

The axis about which the areas are conserved and the

moment of the impulse taken is quite arbitrary, and the ex-

pressions to be used for the areas conserved are given in Art. 179.

It is obvious, that in applying this principle any internal

impulses, such as an impact between two bodies of the sys-

tem, may be omitted.
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235. Ex. Four equal rods, each of length 2a and mass
M, are freely jointed and laid on a smooth horizontal table in

theform of a square, A blow F is then struck at one corner

in the direction of one of the sides. Prove that the sum of the

initial angular velocities of the rod is - -^

,

Let AB, BC, CD, DA be the four rods taken in order,

and let G be the centre of gravity. The velocity communi-

cated to the centre of gravity will be j^. Supposing this

velocity applied to every particle of the system in an op-

posite direction, the centre of gravity will remain at rest and
the initial motion will be that of twisting.

Let the blow F act at the corner B in the direction BC.
Let o) be the resulting angular velocity of AB, CD) w that

of BG, DA. Let E and H be the middle points of the rods

AB, BC. Then by the proposition, since the system starts

firom rest,

area conserved \ ^ ,,.

about (? h^-^ W-

Now the area conserved by any body is equal to the area

conserved by the centre of gravity plus the area conserved

round the centre of gravity. Art. 175. The area conserved by
the centre of gravity E of the rod AB about G = Ma^ci>\ that

conserved round E= Mliai, Art. 179. Hence the whole area

conserved by AB is Mo^to + Mlc^(o. Similarly that con-

served by BC is Ma^ca + M¥(ii . Hence taking the whole

four rods, the equation (1) becomes

. ^ . ^ F

The principle of conservation of areas gives only one

equation, and therefore cannot determine both oj and o)'. To
find these we must have recourse to the equations of motion

R. D. 21
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of each rod taken separate from the rest of the system, intro-

ducing into each equation the unknown reactions at the

hinges ; see Arts. 230, 231.

After the impulse F has ceased, the principle of conser-

vation of areas will still hold with G for the pole of areas,

Art. 178. Hence the sum of the two angular velocities will

be constant during the whole of the subsequent motion.

236. Peop. To determine the change in the vis viva

of a moving system produced hy any collisions between the

hodies or hy any explosions.

Let Vx^Vy^v,^ Va,', Vy^ vj be the resolved parts of the ve-

locities of any particle m of the system before and after the

impulse.

Then by D'Alembert's Principle the momenta

^K-v^), miVy'-Vy), m{v^-v,),

I

H
I

being reversed and taken throughout the whole system, are in

equilibrium with the forces of the impulse. But these last

are themselves in equilibrium. Hence the former set are also

in equilibrium. Therefore by Virtual Velocities,

tm l{vj - V,) Bx +« - Vy) 8y +« - %) Bz] = 0,

where Bx, By, Bz are any small arbitrary displacements of the

particles impinging on each other, which are consistent with

the geometrical conditions of the system during the time of

action of the impulse.

During the impact, it is one geometrical condition that the

particles impinging on each other have no velocity of separa-

tion normal to the common surface of the bodies of which they

form a part.

First. Let the bodies be devoid of elasticity. Then the

above geometrical condition will hold just after the moment
of greatest compression as well as during the impact. Hence
we can put

Bx — v'^Btf By «* v'yBt, Bz s= v',fBt,
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The equation now becomes

Xm [{y', - V,) v\ + {v\ - V,) v\ + (t;', - v^] = ;

/. Xm {:p'\ + 'd\ + v'^) = %m {%v\ + v,v\+ v,v',).

This may be put into the form

Therefore in the impact of inelastic bodies vis viva is

always lost.

Secondly/, Let an explosion take place in any body of the

system. Then the geometrical equation above spoken of will

hold just before the impulse begins as well as during the

explosion, but it will not hold after the particles of the body
have separated. Hence we must now put

As before, we have

Xm {v^v'„ + Vyv'y + v,v\) = 2m (t?/ + v^^ + v,*),

and
2m {v\ + v'\ + v'\) - tm {v\ + v\+ v\)

= + 2m [{v', - v:f + {v\ - VyY + {v\ - v,y].

Therefore in cases of explosion vis viva is always gained.

Thirdly. Let the particles of the system be perfectly

elastic. Then the whole action consists of two parts, a force

of compression as if the particles were inelastic, and a force of

restitution of the nature of an explosion. The circumstances

of these two forces are exactly equal and opposite to each

other. Hence by examining these two expressions it is easy

to see that the vis viva lost in the compression is exactly

balanced by the vis viva gained in the restitution.

21—2
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EXAMPLES.

1. Three equal rods placed in a straight line are jointed

hj hinges to one another, they move with a velocity v per-

pendicular to their lengths ; if the middle point of the middle
one become suddenly fixed, show that the extremities of the

other two will meet in a time —— , a being the length of

each rod.

2. ABj BCaxe two equal uniform rods loosely jointed at B,

and moving with the same velocity in a direction perpendicular

to their length ; if the end A be suddenly fixed, show that the

initial velocity of AB is three times that of BG. Also show
that in the subsequent motion of the rods, the greatest angle

2
between them equals cos"^ - , and that when they are next in

o

a straight line, the angular velocity oi BG is nine times that

of^^.

3. Two equal rods of the same material are connected by
a free joint, and placed in one straight line on a smooth hori-

zontal table; one of them is struck perpendicularly to its

length at its extremity remote from the other rod. Prove that

the linear velocity communicated to its centre of gravity is

- th greater than that which would have been communicated

to it by a similar blow when free.

In the subsequent motion, prove that the rods will ap-

proach so as to form an angle cos"^ - , but not nearer.
o

4. Three equal heavy uniform beams jointed together are

laid in the same right line on a smooth table, and a given
horizontal impulse is applied at the middle point of the centre

beam in a direction perpendicular to its length ; determine the

instantaneous impulse on each of the other beams and the sub-
sequent motion of the system.

I
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5. Three "beams of like substance, jointed together so

as to form one beam, are laid on a smooth horizontal table.

The two extreme beams are equal in length and one of them
receives a blow at its free extremity in a direction perpen-
dicular to its length. Determine the length of the middle
beam in order that the greatest possible angular velocity may
be given to the third.

Result. The length of the middle beam must be to either

of the outer beams as Vs : 2.

6. Two equal uniform rods AB^ BG, loosely jointed to-

gether at B, are laid on a smooth horizontal table, so that

^ ABC=a. A blow is struck at A perpendicular to AB;
determine the direction and magnitude of the impulse at B,
and show that the initial motion of A will be along BA if

tan a = -7=

.

V2

7. Two. rough rods A^ B are placed parallel to each

other and in the same horizontal plane. Another rough rod

C is laid across them at right angles, its centre of gravity

being half way between them . If (7 be raised through any
angle a and let fall, determine the conditions that it may
oscillate, and show that if its length be equal to twice the

distance between A and B, the angle 6 through which it will

rise in the w*^ oscillation is given by the equation

sin^= [-) .sin a.

8. A rod moveable in a vertical plane about a hinge at

its upper end has a given uniform rod attached to its lower

end by a hinge about which it can turn freely in the same
vertical plane as the upper rod ; at what point must the lower

rod be struck horizontally in that same vertical plane that the

upper rod may initially be unaffected by the blow ?

9. A uniform beam is balanced about a horizontal axis

through its centre of gravity, and a perfectly elastic ball is let
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fall from a height h on one extremity ; determine the motion
of the beam and ball.

Result. Let Jf, m be the masses of beam and ball,

2a = length of beam, F, V the velocities of ball at the mo-
ments before and after impact, (o the angular velocity of the

beam. Then

I

6mF ^^, y ^m-M
{M+ 3m) a* ' 3m + M' 4

10. A free lamina of any form is tm-ning in its own
plane about an instantaneous centre of rotation 8 and im-
pinges on a fixed obstacle P, situated in the straight line

joining the centre of gravity G to S. Find the position of P,

Jirst, that the centre of gravity may be reduced to rest,

secondly^ that its velocity after impact may be the same as

before but reversed in direction.

Result. In the first case, P coincides either with G or

with the centre of oscillation. In the second case the points

X = GP are found from the equation

2 ^ _i_^' n

where SG =K H
11. Two perfectly rough circles are revolving with dif-

ferent angular velocities in the same plane, and their circum-
ferences are brought together so as to touch each other. The
centre of one being fixed, determine the motion.

12. A series of equal cylinders are absolutely fixed, the

axes of each being in the same horizontal plane, and each

cylinder touching two others along a generating line. A heavy
inelastic sphere of the same radius is passing over them in a
direction perpendicular to their axes, and remaining in con-

tact with them always. If the sphere be perfectly smooth,

show that it will lose one-half of its velocity at each impact,

if perfectly rough, three-fourths. Also in the first case show
that it may surmount one cylinder after an impact but not

more, in the second that it cannot surmount one.
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13. An inelastic sphere sliding along a smooth horizontal

plane impinges upon a fixed rough point ; determine the con-
dition that it may just roll over the point.

14. One half the inner surface of a fixed hemispherical
bowl is smooth, and the other rough: a solid sphere slides

down the smooth part of the bowl starting from rest at the

horizontal rim, and at the bottom comes in contact with and
rolls up the rough part of the surface. Find the change of

vis viva of the sphere at the bottom of the bowl, and show
that if 6 be the angle which the line joining the centres of

the sphere and bowl makes with the vertical when the sphere

2
begins to descend the rough surfaces, cos = -

,

15. A ball spinning about a vertical axis moves on a
smooth table and impinges directly on a perfectly rough ver-

tical cushion ; show that the vis viva of the ball is diminished
in the ratio

, 10€* + 14tan^^ : 10 + 49tan'^,

where e is the elasticity of the ball and 6 the angle of re-

flexion.

16. A lamina of any form lying on a smooth. horizontal

plane, is struck by a horizontal blow; determine the point

about which it will begin to turn, and prove that if c, c be

the distances from the centre of gravity of the body of this

point and of the direction of the blow respectively, cc = W^

where Iz is the radius of gyration of the lamina about the ver-

tical line through its centre of gravity.

17. A number of equal discs are placed nearly touching

each other and having their centres in the same straight line

upon a smooth horizontal table, and the last has upon its

centre a perfectly rough ball. If the first disc be made to

impinge upon the second with a given velocity, find the time

which will elapse before the ball rolls upon the table.

If the ball be removed, and if the last of the discs be not

perfectly homogeneous, that is, if its centre of gravity do not
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coincide with its centre of figure, and if the circumferences

of the discs be perfectly rough, determine the nature of the

instantaneous motion, the discs being made to impinge upon
each other as before.

18. A perfectly rough right prism whose section is a

square is placed with its axis horizontal upon a board of equal

mass lying on a smooth horizontal table. A vertical plane

containing the centre of gravity of the two is perpendicular

to the axis of the prism, a horizontal blow in this plane

applied to the board communicates motion to the system;

show that the prism will topple over if the momentum of the

blow be greater than that acquired by the system falling

from a height —• tan — a, where a is a side of the square.

19. A free plane lamina receives a single blow perpendi-

cular to its plane ; show that (i) if the locus of points where
the blow may have been applied be a straight line, the spon-

taneous axis will pass through a determinate point
;

(ii) if the

locus be a circle (centre (7), the spontaneous axis will be a

tangent to an ellipse whose axes are in the direction of the

principal axes at G in the plane of the lamina.

20. A free oblate spheroid at rest, whose equatorial and
polar axes are a and c, is struck by a blow perpendicular to

its axis at any point in a plane parallel to and at a
a^ + c^

distance ^^ from the equator ;
prove that there exists an

aeV2
instantaneous axis which meets the polar axis in a point P,

and which, if P become fixed, will be an axis of permanent
rotation.

21. A square is moving freely about a diagonal with
angular velocity o), when one of the angular points not in

that diagonal becomes fixed; determine the impulsive pressure

on the fixed point, and show that the instantaneous angular

velocity will be —

.
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22. A smootK cone bounded by planes parallel to the

axis, and equidistant from the vertex receives a blow at a

given point. Determine the axis about which it begins to

rotate, the base being an ellipse.

23. An inelastic sphere on a rough horizontal plane

receives a blow which does not cause it to leave the plane.

Prove that in general it will first describe a portion of a para-

bola, and afterwards move in a right line.

24. A uniform rough sphere of radius a^ rotating with
uniform angular velocity O about an axis through its centre,

is brought into contact with another uniform rough sphere of

equal size and mass whose centre is fixed rotating with equal

angular velocity about an axis at right angles to the former,

the line joining the centres of the spheres being perpendicular

to both axes of rotation. Prove that immediately after im-
pact, the centre of the former sphere will move in a direction

equally inclined to the axes of rotation before impact, with

a velocity — afl, and that each sphere will rotate with an

angular velocity -—- . H about an axis inclined to its former

5
axis of rotation at an angle tan"^ -

.

25. A rigid body moves about a fixed point and is

struck by a couple whose components about the principal

axes at are X, Jtf, N, Prove that if a second point in the

line whose direction-cosines are Z, w, n with respect to the

principal axes be also fixed, the vis viva of the motion gene-

rated will be

and show that this is a maximum when the line ?, w, n is

the instantaneous axis of rotation through 0, when only

is fixed.
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26. A string without weight is coiled round a rough
horizontal cylinder, of which the mass is M and radius a,

and which is capable of turning round its axis. To the free

extremity of the string is att9,ched a chain of which the mass
is m and the length Z; if the chain be gathered close up and
then let go, prove that if 6 be the angle through which the

cylinder has turned after a time t before the chain is fully

stretched,

I

MaO-l^T-)



CHAPTER IX.

MISCELLANEOUS EXAMPLES,

1. A POINT moves in a plane lamina so that a tangent to

its path bisects the angle between the principal axes at that

point. Find its path.

Result, An ellipse or hyperbola whose centre is at the

centre of gravity of the lamina.

2. If each element of the area of a triangleABC be mul-
tiplied by the n^^ power of its distance from a straight line

passing through one angle Ay then the sum of the products is

yy"^-y"\ ^
[m + l)(w4-2) ^-7

where yS and 7 are the distances of the angular points B, G
from the straight line through the angular point A, and A is

the area of the triangle.

3. A body of any form can turn freely about one of the

principal axes at the centre of gravity as a fixed axis. To de-

termine the moment of the attraction of a very distant centre

of force about that axis.

Let the centre of gravity G be the origin, and the prin-

cipal axes at G the axes of co-ordinates. Let the fixed axis

be the axis of y. Let x\ y\ z be the co-ordinates of the centre

of force 8, and let </> [f] be the attraction on a unit of mass at

a distance r. Let SG—p, Let x, y^ z be the co-ordinates
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of any particle m of tlie body, and let r be the distance of B
from m. Then the moment of the attraction about F is

= Xm^{x'z--xz').

Now r = \/{x-xy + (y'-yy+{z'-zY

XX 4- yy + zz'

=p
-p '

the terms depending on the squares of small quantities being

neglected

;

<l){r) _<f){p) _^ d^(j) (p) XX +yy'+zz
'

' r p dp p '

p

Let /=iW /' =f

.

•^ p ' ^ dp

Then the moment of the force is

^ /- j,,xx-\-yy-}-zz\., »

=^Xm[f-f ^ j
(xz-xz)

=fo''^mz ^fz%mx

+— . {{z^ — x^) %mzx-\-y'z ^mxy — x'y' ^myz]

\-^ xztm{a?-z^).

But ^mx = 0, ^mz = 0, and since the axes of co-ordinates

are principal axes at G, %mxy — 0, ^myz = 0, %mzx — 0.

Hence the expression for the moment becomes

fM^-^— xz'^m (x^ — z^)

.

P

Let A^ Bj C be the moments of inertia about the axes,

then we have

p up p
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Let 6 be the angle the plane passing through S and the

axis of y makes with the plane of yz ; then the moment
tending to turn the body from the plane of yz is

p dp p ^

4. An ellipsoid can turn freely about one of its principal

diameters as a fixed axis, and the particles of the body are

acted on by the attraction of a distant centre of force situated

nearly in the principal plane perpendicular to the fixed axis.

If r<f> (r) be the attraction at a distance r on a unit of mass,

prove that the time of a small oscillation is

^v^2.- ^A '
r<l){r)

where B is the moment of inertia of the ellipsoid about the

fixed axis ; A, G the moments of inertia about the other two
axes ; and r is the distance of the centre of force from the

centre of the ellipsoid.

5. The centre of gravity of a disc is constrained to describe

an orbit which is very nearly circular about a centre of force

in its own plane. Supposing the force to vary inversely

as the square of the distance, determine the angular motion of

the disc.

Let GA, GG loQ the principal axes at G, the centre of

gravity of the disc, and GB the axis perpendicular to the

plane about which the disc rotates. Let A, B, G be the

moments of inertia about GA, GB, GG respectively, and
let G be greater than ^. Also let^= ill/^^

Let G be the centre of force, and let Gx be the position

of 0^ at the time « = 0. Let us suppose that the disc

turns on its axis in the same direction that the centre of

gravity describes its circular orbit about G ; and let the angle

xGG =
<j> and the angle GGA = 6, the angles being measured

in the directions of rotation. Let n be the angular velocity

of G about 0, which will be constant throughout the motion,

then <j) = nt.
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Let the moment round G due to the attraction of on

the disc, and tending to turn it round in the direction oppo-

site to the rotation, be Mp^ sin 6 cos 6.

Then "by example (4)

P

where p= OG and ^ is the attraction of at a distance p.

Then the equation of motion is

= -^5. sin 20 (1);

I

•©=«+6="«-
in

To simplify the constants let us suppose that at some
instant during the motion the axis GA pointed towards the

centre of force, and let the time be measured from this epoch.

Let the initial value of -y- be a. Then when ^ = 0, -y- = a

;

at at

"-"*&

© «.
y«2

.9 JPA a''-|5sin''^ =

Hence, throughout the motion,

sm ^ < —
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Let 71 be the angular velocity of the disc about Q at the

time« = 0. Then
Oi = n —n.

If n =n, a = 0, and therefore 6 = 0. Hence if the axis

GA originally pointed towards 0, it will continue to point

towards throughout the motion.

If n be very nearly equal to n, a is very small, and there-

fore 6 is confined between very narrow limits. Hence if the

axis GA originally pointed nearly towards 0, then the an-
gular velocity of the disc would become equal to n, and the

disc would move so that GA the axis of least moment would
very nearly point towards throughout the motion. In
this case is very small and the motion may be found from
the equation

which is obtained by neglecting the squares and higher

powers of 6 in equation (1). Hence the time of a small

oscillation is —- *

P
This will explain why the moon always turns the same

face towards the earth, and why the angular velocity about

its axis always participates in the secular changes in the

moon's mean motion.

Jca
If n be not nearly equal to n so that — is equal to

or greater than unity, there are no limits to the value of 6.

Suppose — = 1, then the equation of motion becomes

.-. ^=±acos^;

the constant being determined from the condition that

vanishes when ^ = 0. Hence as t increases, sin approaches
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+ 1, or the disc tends to take up that position in which the

axis of G always points to the centre of force.

If the disc were placed initially with its axis of greatest

moment, viz. GC, pointing towards 0, then »^ would he nega-
tive. If 6 now represent the angle OGU, and if —p'^ be
written for p"^, it will be evident from equation (2) that the

motion will not necessarily be such as to make GC always
point to 0.

6. The point of support of a simple pendulum has a small

horizontal oscillatory motion represented by x = asmnt.
Determine the effect on the small oscillations of the pendulum,
and show that if In^ = g, where I is the length of the simple

pendulum, the vibrations of the pendulum will become large.

Also determine the effect on the motion, when the point of

support has a small oscillatory motion proportional to the

horizontal oscillation of the ball of the pendulum

7. Explain how a person sitting on a chair is able t

move the chair across the room by a series of jerks, and
without touching the gTound with his feet.

8. A rectangle whose opposite sides AD, BC are vertical

rests on a perfectly smooth horizontal table. A ring F rests

on a smooth horizontal wire joining the middle points E and
F of AD, 5(7 at a distance C from BG. On a sudden the

rod BG becomes repulsive and drives the ring towards AD.
Find the velocity of the ring just before it strikes ADy and
the space through which the rectangle has moved.

9. An elastic string is rolled without tension round a

perfectly rough cylinder. One end of the string being

attached to a fixed point, the cylinder descends by its own
weight. Supposing the centre of the cylinder to describe a

straight line, prove that

II

3^ + o = i^^, I

where x and y are respectively the unstretched and stretched

lengths of the string unrolled from the cylinder.
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